Skip to main content
Log in

Hydrogen gas sensor based on nanofibers TiO2-PVP thin film at room temperature prepared by electrospinning

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

TiO2/PVP nanofibers (NFs) have been deposited onto glass substrate by electrospinning method. X-ray diffraction analysis confirms the formation of anatse phase with high crystallinity and Field emission scanning electron microscopy and atomic force microscopy observations reveal the formation of fibrous nanostructure with a mean diameter in the range 41–281 nm and high porosity. A sensor was fabricated based on TiO2/PVP nanofibers (NFs) by sputtering Pt electrodes onto glass substrate and hydrogen (H2)-sensing performance was examined at room temperature over broad range of concentrations (167–1000 ppm). The results show that the sensor has good response towards H2 with a good sensitivity reaching 63% upon exposure to 1000 ppm of H2 gas at a low power consumption of 60 mW. The improved sensing performance is associated with surface morphology, high porosity and high surface-to-volume ratio of one-dimensional NFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Al-Hazeem NZA (2018) Nanofibers and Electrospinning Method. Nov Nanomater-Synth Appl

  • Aroutiounian V (2007) Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells. Int J Hydrogen Energy 32(9):1145–1158

    Article  Google Scholar 

  • Chuangchote S, Jitputti J, Sagawa T, Yoshikawa S (2009) Photocatalytic activity for hydrogen evolution of electrospun TiO2 nanofibers. ACS Appl Mater Interfaces 1(5):1140–1143

    Article  Google Scholar 

  • Comini E, Faglia G, Sberveglieri G, Pan Z, Wang ZL (2002) Stable and highly sensitive gas sensors based on semiconducting oxide nanobelts. Appl Phys Lett 81(10):1869–1871

    Article  Google Scholar 

  • Diebold U (2003) The surface science of titanium dioxide. Surf Sci Rep 48(5–8):53–229

    Article  Google Scholar 

  • Ding B, Wang M, Yu J, Sun G (2009) Gas sensors based on electrospun nanofibers. Sensors 9(3):1609–1624

    Article  Google Scholar 

  • Durrani S, Al-Kuhaili MF, Bakhtiari IA, Haider MB (2012) Investigation of the carbon monoxide gas sensing characteristics of tin oxide mixed cerium oxide thin films. Sensors 12(3):2598–2609

    Article  Google Scholar 

  • Dutta PK, Frank M, Hunter GW, George M (2005) Reactively sputtered titania films as high temperature carbon monoxide sensors. Sens Actuators B Chem 106(2):810–815

    Article  Google Scholar 

  • Fernandez-Lima F, Baptista D, Zumeta I, Pedrero E, Prioli R, Vigil E, Zawislak F (2002) Structural analysis of TiO2 films grown using microwave-activated chemical bath deposition. Thin Solid Films 419(1–2):65–68

    Article  Google Scholar 

  • Hafeez M, Manzoor U, Bhatti A (2011) Morphology tuned ZnS nanostructures for hydrogen gas sensing. J Mater Sci: Mater Electron 22(12):1772–1777

    Google Scholar 

  • Haidry A, Schlosser P, Durina P, Mikula M, Tomasek M, Plecenik T, Roch T, Pidik A, Stefecka M, Noskovic J (2011) Hydrogen gas sensors based on nanocrystalline TiO2 thin films. Open Phys 9(5):1351–1356

    Article  Google Scholar 

  • Hart JN, Menzies D, Cheng Y-B, Simon GP, Spiccia L (2007) A comparison of microwave and conventional heat treatments of nanocrystalline TiO2. Sol Energy Mater Sol Cells 91(1):6–16

    Article  Google Scholar 

  • Iwanaga T, Hyodo T, Shimizu Y, Egashira M (2003) H2 sensing properties and mechanism of anodically oxidized TiO2 film contacted with Pd electrode. Sens Actuators B Chem 93(1–3):519–525

    Article  Google Scholar 

  • Jia W, Su L, Ding Y, Schempf A, Wang Y, Lei Y (2009) Pd/TiO2 nanofibrous membranes and their application in hydrogen sensing. J Phys Chem C 113(37):16402–16407

    Article  Google Scholar 

  • Jia W et al (2009) Pd/TiO2 nanofibrous membranes and their application in hydrogen sensing. J Phys Chem C 113(37):16402–16407

    Article  Google Scholar 

  • Jun Y-K, Kim H-S, Lee J-H, Hong S-H (2006) CO sensing performance in micro-arc oxidized TiO2 films for air quality control. Sens Actuators B Chem 120(1):69–73

    Article  Google Scholar 

  • Kim I-D, Rothschild A, Tuller HL, Kim DY, Jo SM (2007) Electrospun TiO2 nanofibers for gas sensing applications. In: Technical Proceedings of the 2007 Clean Technology Conference and Trade Show Cleantech, 2007, pp 14–17

  • Li Z, Ding D, Liu Q, Ning C (2013) Hydrogen sensing with Ni-doped TiO2 nanotubes. Sensors 13(7):8393–8402

    Article  Google Scholar 

  • Li Z et al (2013) Hydrogen sensing with Ni-doped TiO2 nanotubes. Sensors 13(7):8393–8402

    Article  Google Scholar 

  • Lu C, Chen Z (2009) High-temperature resistive hydrogen sensor based on thin nanoporous rutile TiO2 film on anodic aluminum oxide. Sens Actuators B: Chem 140(1):109–115

    Article  MathSciNet  Google Scholar 

  • Mardare D, Iftimie N, Luca D (2008) TiO2 thin films as sensing gas materials. J Non-Cryst Solids 354(35–39):4396–4400

    Article  Google Scholar 

  • Moon HG, Jang HW, Kim J-S, Park H-H, Yoon S-J (2010a) Mechanism of the sensitivity enhancement in TiO2 hollow-hemisphere gas sensors. Electron Mater Lett 6(4):135–139

    Article  Google Scholar 

  • Moon J, Park J-A, Lee S-J, Zyung T, Kim I-D (2010b) Pd-doped TiO2 nanofiber networks for gas sensor applications. Sens Actuators B Chem 149(1):301–305

    Article  Google Scholar 

  • Paulose M, Varghese OK, Mor GK, Grimes CA, Ong KG (2005) Unprecedented ultra-high hydrogen gas sensitivity in undoped titania nanotubes. Nanotechnology 17(2):398

    Article  Google Scholar 

  • Ramakrishna S, Fujihara K, Teo W-E, Yong T, Ma Z, Ramaseshan R (2006) Electrospun nanofibers: solving global issues. Mater Today 9(3):40–50

    Article  Google Scholar 

  • Rutledge GC, Fridrikh SV (2007) Formation of fibers by electrospinning. Adv Drug Deliv Rev 59(14):1384–1391

    Article  Google Scholar 

  • Sadek A et al (2009) Nanoporous TiO2 thin film based conductometric H2 sensor. Thin Solid Films 518(4):1294–1298

    Article  MathSciNet  Google Scholar 

  • Savage N, Chwieroth B, Ginwalla A, Patton BR, Akbar SA, Dutta PK (2001) Composite n–p semiconducting titanium oxides as gas sensors. Sens Actuators B Chem 79(1):17–27

    Article  Google Scholar 

  • Seeley ZM, Bandyopadhyay A, Bose S (2010) Titanium dioxide thin films for high temperature gas sensors. Thin Solid Films 519(1):434–438

    Article  Google Scholar 

  • Singh P, Kumar A, Kaur D (2008) Substrate effect on texture properties of nanocrystalline TiO2 thin films. Phys B 403(19–20):3769–3773

    Article  Google Scholar 

  • Tang H, Prasad K, Sanjines R, Levy F (1995) TiO2 anatase thin films as gas sensors. Sens Actuators B Chem 26(1–3):71–75

    Article  Google Scholar 

  • Williams DE (1999) Semiconducting oxides as gas-sensitive resistors. Sens Actuators B Chem 57(1–3):1–16

    Article  Google Scholar 

  • Wisitsoraat A, Tuantranont A, Comini E, Sberveglieri G, Wlodarski W (2009) Characterization of n-type and p-type semiconductor gas sensors based on NiOx doped TiO2 thin films. Thin Solid Films 517(8):2775–2780

    Article  Google Scholar 

  • Xiang C et al (2014) A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram Int 40(10):16343–16348

    Article  Google Scholar 

  • Xiang C, She Z, Zou Y, Cheng J, Chu H, Qiu S, Zhang H, Sun L, Xu F (2014) A room-temperature hydrogen sensor based on Pd nanoparticles doped TiO2 nanotubes. Ceram Int 40(10):16343–16348

    Article  Google Scholar 

  • Zuruzi AS, MacDonald NC, Moskovits M, Kolmakov A (2007) Metal oxide “nanosponges” as chemical sensors: highly sensitive detection of hydrogen with nanosponge titania. Angew Chem Int Ed 46(23):4298–4301

    Article  Google Scholar 

Download references

Acknowledgement

The authors gratefully acknowledge the financial support from the School of Physics at Universiti Sains Malaysia under Grant FRGS No. 203/PFIZIK/6711349.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabeel Z. Al-Hazeem.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Hazeem, N.Z., Ahmed, N.M., Matjafri, M.Z. et al. Hydrogen gas sensor based on nanofibers TiO2-PVP thin film at room temperature prepared by electrospinning. Microsyst Technol 27, 293–299 (2021). https://doi.org/10.1007/s00542-020-04952-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04952-0

Navigation