Skip to main content
Log in

Macro-to-micro positioning and auto focusing for fully automated single cell microinjection

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The automation methods and technologies of the single cell micro-injection reported in the literature have the common assumption that both the cell and the microtools has already been positioned within the microscopic field of view and well-focused. However, moving the microtools and biological cells from the macro field of view (macro-FOV) into the micro field of view (micro-FOV), and then further moving down into the culture medium and focusing were conducted manually and proved to be time consuming. In this work, we present algorithms and methods to automate this process. An electrothermal microgripper is used for picking and holding a zebrafish embryo instead of traditional micropipette. In order to position the microgripper into the micro-FOV, an extra macro camera is employed such that the microgripper jaws are under the macro-FOV. The micro-FOV is searched by moving the microgripper jaws in a serpentine path and zigzag path, respectively, and the grid-line identification algorithm is proposed to recognize the microgripper jaws that appear in the micro-FOV. Then, a contact detection algorithm is used to determine whether the gripper jaws are in the culture medium or not. Finally, eight algorisms are evaluated and compared to select the algorism with the best performance for auto-focusing the microgripper jaws in the culture medium. Up to 100 experiments are conducted to validate the proposed method for the macro-to-micro positioning and auto focusing of the microgripper jaws with the success rate 100% and 90%, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Adamson K, Sheridan E, Grierson AJ (2018) Use of zebrafish models to investigate rare human disease. J Med Genet 55:641–649

    Article  Google Scholar 

  • Argenton F, Bitzur S, Yarden A (2007) An inexpensive and easy microinjection embryo-tray. Zebrafish Book 5th Edition

  • Benhal P, Chase JG, Gaynor P, Obackc B, Wang W (2014) AC electric field induced dipole-based on-chip 3D cell rotation. Lab Chip 14:2717

    Article  Google Scholar 

  • Chen SY, Qian H, Wu Z (2007) Fast normalized cross-correlation for template matching. Chin J Sens Actuators

  • Chen D, Sun M, Zhao X (2016) Oocytes polar body detection for automatic enucleation. J Micromach 7:27

    Article  Google Scholar 

  • Chen T, Wang Y, Yang Z, Liu H, Liu J, Sun L (2017) A PZT actuated triple-finger gripper for multi-target micromanipulation. Micromachines 8(2):33

    Article  Google Scholar 

  • Chung SE, Dong X, Sitti M (2015) Three-dimensional heterogeneous assembly of coded microgels using an untethered mobile microgripper. Lap Chip 15(7):1667–1676

    Article  Google Scholar 

  • Desai JP et al (2007) Engineering approaches to biomanipulation. Ann Rev Biomed Eng 9:35–53

    Article  Google Scholar 

  • Geusebroek J et al (2000) Robust autofocusing in microscopy. Cytometry 36(1):1–9

    Article  Google Scholar 

  • Ghanbari A, Nock V, Johari S, Blaikie R, Chen XQ, Wang W (2012) A micropillar-based on-chip system for continuous force measurement of C. elegans. J Micromech Microeng 22(9):095009

    Article  Google Scholar 

  • Gianaroli L (2011) Preimplantation genetic diagnosis: Polar body and embryo biopsy. Hum Reprod 15(suppl 4):69–75

    Article  Google Scholar 

  • Groen F, Young IT, Ligthart G (1985) A comparison of different focus functions for use in autofocus algorithms. Cytometry 12:81–91

    Article  Google Scholar 

  • Hamm P et al (2010) Content-based Autofocusing in automated microscopy. Image Anal Stereol 29:173–180

    Article  Google Scholar 

  • Huang HB, Sun D, Mills JK, Cheng SH (2009) Robotic cell injection system with position and force control: toward automatic batch biomanipulation. IEEE Trans Robotics 25(3):727

    Article  Google Scholar 

  • Liu X, Sun Y, Wang WH, Lansdorp BM (2007) Vision-based cellular force measurement using an elastic microfabricated device. J Micromech Microeng 17:1281–1288

    Article  Google Scholar 

  • Liu J, Shi C, Wen J, Pyne D, Ru CH, Luo J, Xie S, Sun Y (2015) Automated vitrification of embryos: a robotics approach. IEEE Robot Autom Mag 22(2):33–40

    Article  Google Scholar 

  • Liu J, Zhang Z, Wang X, Liu H, Zhao Q, Zhou C, Tan M, Pu H, Xie SR, Sun Y (2017) Automated robotic measurement of cell morphologies. IEEE Robotics Autom Lett 2(2):499

    Article  Google Scholar 

  • Lu Z, Zhang XP, Leung C, Esfandiari N, Casper RF, Sun Y (2011) Robotic ICSI (intracytoplasmic sperm injection). IEEE Trans Biomed Eng 58(7):2102–2108

    Article  Google Scholar 

  • Luca G (2011) Preimplantation genetic diagnosis: polar body and embryo biopsy. Human Reprod 15(suppl 4):69–75

    Google Scholar 

  • Mattos LS, Grant E, Thresher R, Kluckman K (2009) Blastocyst microinjection automation. IEEE Transactions on Information Technology in Biomedicine a Publication of the IEEE Engineering in Medicine & Biology Society 13(5):822–831

    Article  Google Scholar 

  • Murphey RD, Zon LI (2006) Small molecule screening in the zebrafish. Methods 39(3):255–261

    Article  Google Scholar 

  • Nakajima M, Ayamura Y, Takeuchi M, Hisamoto N, Pastuhov S, Hasegawa Y, Fukuda T, Huang Q (2017) High-Precision Microinjection of Microbeads into C. elegans Trapped in a Suction Microchannel. IEEE International Conference on Robotics and Automation (ICRA). Singapore

  • Nayar SK (1994) Shape from focus. IEEE Trans Pattern Anal Machine Intell 16:824–831

    Article  Google Scholar 

  • Permana S, Grant E, Glenn MW, Yoder Jeffrey A (2016) A review of automated microinjection systems for single cells in the embryogenesis Stage. IEEE/ASME Trans Mechatron 21(5):2391

    Article  Google Scholar 

  • Pitchar A, Rajaretinam RK, Freeman JL (2019) Zebrafish as an emerging model for bioassay-guided natural product drug discovery for neurological disorders. Medicines (Basel) 6(2):61. https://doi.org/10.3390/medicines6020061

    Article  Google Scholar 

  • Saleem S, Kannan RR (2018) Zebrafish: an emerging real-time model system to study Alzheimer’s disease and neurospecific drug discovery. Cell Death Discov 4:45

    Article  Google Scholar 

  • Subbarao M, Choi TS (1993) Focusing techniques. J Opt Eng 32:2824–2836

    Article  Google Scholar 

  • Sun Y, Duthaler S, Nelson BJ (2004) Autofocusing in computer microscopy: selecting the optimal focus algorithm. Microsc Res Tech 65(3):139–149

    Article  Google Scholar 

  • Wang G, Xu Q (2017) Design and precision position/force control of a piezo-driven microinjection system. IEEE/ASME Trans Mechatron 22(4):1744

    Article  Google Scholar 

  • Wang WH, Liu XY, Sun Y (2007a) Contact detection in microrobotic manipulation. Int J Robot Res 26(8):821–828

    Article  Google Scholar 

  • Wang WH, Liu XY, Gelinas D, Ciruna B, Sun Y (2007b) A fully automated robotic system for microinjection of Zebrafish embryos. PLoS ONE 2(9):e8621–8627

    Google Scholar 

  • Wang Z, Feng C, Ang WT, Tan SYM, Latt WT (2017) Autofocusing and polar body detection in automated cell manipulation. IEEE Trans Biomed Eng 64(5):1099

    Article  Google Scholar 

  • Xie Y, Sun D, Liu C, and Cheng SH (2008) An adaptive impedance force control approach for robotic cell microinjection. In: 2008 IEEE/RSJ international conference on intelligent robots and systems, acropolis convention Center Nice, France, Sept, 22–26

  • Xie M, Mills JK, Wang Y, Mahmoodi M, Sun D (2016) Automated translational and rotational control of biological cells with a robot-aided optical tweezers manipulation system. IEEE Trans Autom Sci Eng 13(2):543–551

    Article  Google Scholar 

  • Zhang XP, Leung C, Lu Z, Esfandiari N, Casper RF, Sun Y (2012) Controlled aspiration and positioning of biological cells in a micropipette. IEEE Trans Biomed Eng 59(4):1032

    Article  Google Scholar 

  • Zhang Z, Yu Y, Song P et al (2019) Automated manipulation of zebrafish embryos using an electrothermal microgripper. Microsystem Technol 26:1823

    Article  Google Scholar 

  • Zhao QL, Sun M, Cui M, Yu J, Qin Y, Zhao X (2015) Robotic cell rotation based on the minimum rotation force. IEEE Trans Autom Sci Eng 12(4):1504

    Article  Google Scholar 

  • Zhao YL, Sun H, Sha X, Gu L, Zhan Z, Li WJ (2019) A review of automated microinjection of zebrafish embryos. Micromachines 10(1):7

    Article  Google Scholar 

  • Zhuang S, Lin W, Gao H, Shang X, Li L (2017) Visual servoed Zebrafish larva heart microinjection system. IEEE Trans. Ind Electron 64(5):3727

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by 2018 Innovative Methodology Project (2018IM010400).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuping Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, L., Zhang, H., Wei, H. et al. Macro-to-micro positioning and auto focusing for fully automated single cell microinjection. Microsyst Technol 27, 11–21 (2021). https://doi.org/10.1007/s00542-020-04891-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04891-w

Navigation