Skip to main content
Log in

Characterization of nanogenerators based on S-doped zinc oxide nanorod arrays

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Nanogenerators (NGs) synthesized with sulfur (S) doped zinc oxide (ZnO) nanorods (NRs) by a hydrothermal method were characterized for their performances in this study. The NG formation steps consist of (1) growing the S-doped ZnO NRs on an indium-tin-oxide (ITO) glass substrate, (2) employing an ITO etching paste to create the electrode pattern, and (3) depositing an electrode of aluminum (Al) film on the ITO glass substrate by a radio-frequency magnetron sputtering technique for the final NG assembly. As found, the ZnO NRs doped with 5 at.% S exhibit the best efficiency among all S-doped ZnO NRs, with the optimal operational outputs of 150 mV, 0.16 μA, and 24 nW, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Akhtar N, Metkar SK, Girigoswami A, Girigoswami K (2017) ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Mater Sci Eng C 78:960–968

    Article  Google Scholar 

  • Al-Hadeethi Y, Umar A, Ibrahim AA, Al-Heniti SH, Kumar R, Baskoutas S, Raffah BM (2017) Synthesis, characterization and acetone gas sensing applications of Ag-doped ZnO nanoneedles. Ceram Int 43:6765–6770

    Article  Google Scholar 

  • Al-Ruqeishi MS, Mohiuddin T, Al-Habsi B, Al-Ruqeishi F, Al-Fahdi A, Al-Khusaibi A (2016) Piezoelectric nanogenerator based on ZnO nanorods. Arab J Chem 12:5173–5179

    Article  Google Scholar 

  • Arnold MS, Avouris P, Pan ZW, Wang ZL (2003) Field-effect transistors based on single semiconducting oxide nanobelts. J Phys Chem B 107:659–663

    Article  Google Scholar 

  • Astakhov GV, Yakovlev DR, Kochereshko VP, Ossau W, Faschinger W, Puls J, Henneberger F, Crooker SA, McCulloch Q, Wolverson D, Gippius NA, Waag A (2002) Binding energy of charged excitons in ZnSe-based quantum wells. Phys Rev B 65:165335

    Article  Google Scholar 

  • Bhatia D, Sharma H, Meena RS, Palkar VR (2016) A novel ZnO piezoelectric microcantilever energy scavenger: fabrication and characterization. Sens Biosens Res 9:45–52

    Google Scholar 

  • Chand P, Gaur A, Kumar A, Gaur UK (2014) Structural, morphological and optical study of Li doped ZnO thin films on Si (100) substrate deposited by pulsed laser deposition. Ceram Int 40:11915–11923

    Article  Google Scholar 

  • Chen J, Li J, Li JH, Xiao GQ, Yang XF (2011) Large-scale syntheses of uniform ZnO nanorods and ethanol gas sensors application. J Alloys Compd 509:740–743

    Article  Google Scholar 

  • Cho J, Lin QB, Yang S, Simmons JG, Cheng YW, Lin E, Yang JQ, Foreman JV, Everitt HO, Yang WT, Kim J, Liu J (2012) Sulfur-doped zinc oxide (ZnO) nanostars: synthesis and simulation of growth mechanism. Nano Res 5:20–26

    Article  Google Scholar 

  • Dondi D, Bertacchini A, Brunelli D, Larcher L, Benini L (2008) Modeling and optimization of a solar energy harvester system for self-powered wireless sensor networks. IEEE Trans Ind Electron 55:2759–2766

    Article  Google Scholar 

  • Fang X, Li JH, Zhao DX, Shen DZ, Li BH, Wang XH (2009) Phosphorus-doped p-type ZnO nanorods and ZnO nanorod p–n homojunction LED fabricated by hydrothermal method. J Phys Chem C 113:21208–21212

    Article  Google Scholar 

  • Fang XS, Zhai TY, Gautam UK, Li L, Wu LM, Bando YS, Golberg D (2011) ZnS nanostructures: from synthesis to applications. Prog Mater Sci 56:175–287

    Article  Google Scholar 

  • Geng BY, Wang GZ, Jiang Z, Xie T, Sun SH, Meng GW, Zhang LD (2003) Synthesis and optical properties of S-doped ZnO nanowires. Appl Phys Lett 82:4791–4793

    Article  Google Scholar 

  • Hsu CL, Chen KC (2012) Improving piezoelectric nanogenerator comprises ZnO nanowires by bending the flexible PET substrate at low vibration frequency. J Phys Chem C 116:9351–9355

    Article  Google Scholar 

  • Hsu CL, Su IL, Hsueh TJ (2017) Tunable schottky contact humidity sensor based on S-doped ZnO nanowires on flexible PET substrate with piezotronic effect. J Alloys Compd 705:722–733

    Article  Google Scholar 

  • Hu YF, Xu C, Zhang Y, Lin L, Snyder RL, Wang ZL (2011a) A nanogenerator for energy harvesting from a rotating tire and its application as a self-powered pressure/speed sensor. J Adv Mater 23:4068–4071

    Article  Google Scholar 

  • Hu CJ, Lin YH, Tang CW, Tsai MY, Hsu WK, Kuo HF (2011b) ZnO-coated carbon nanotubes: flexible piezoelectric generators. Adv Mater 23:2941–2945

    Article  Google Scholar 

  • Huang MH, Mao S, Feick H, Yan HQ, Wu YY, Kind H, Weber E, Russo R, Yang PD (2001) Room-temperature ultraviolet nanowire nanolasers. Science 292:1897–1899

    Article  Google Scholar 

  • Hussain SG, Liu DM, Huang XT, Sulieman KM, Liu JP, Liu HR, Rasool RU (2007) Synthesis and optical properties of heterostructured ZnO:S/ZnO nanosaws. J Phys D 40:7662–7668

    Article  Google Scholar 

  • Katz E, Buckmann AF, Willner I (2001) Self-powered enzyme-based biosensors. J Am Chem Soc 123:10752–10753

    Article  Google Scholar 

  • Kim KJ, Park YR (2001) Large and abrupt optical band gap variation in In-doped ZnO. Appl Phys Lett 78:475–477

    Article  Google Scholar 

  • Ko YH, Nagaraju G, Lee SH, Yu JS (2014) PDMS-based triboelectric and transparent nanogenerators with ZnO nanorod arrays. ACS Appl Mater Interfaces 6:6631–6637

    Article  Google Scholar 

  • Koike K, Mori Y, Sasa S, Hirofuji Y, Yano M (2016) Glucose sensing by an enzyme-modified ZnO-based FET. Procedia Eng 168:84–88

    Article  Google Scholar 

  • Li C, Fang GJ, Xu S, Zhao DS, Zhao XZ (2006) Phase-segregation assisted growth of quasi-aligned ZnO nanorods on a Mg0.6Zn0.4O-coated Si substrate by thermal evaporation. Nanotechnology 17:5367–5372

    Article  Google Scholar 

  • Lin QB, Wu SQ, Zhu ZZ (2016) Formation of star nanowires of sulfur-doped zinc oxide: ab initio calculations. AIP Adv 6:095219

    Article  Google Scholar 

  • Liu CW, Chang SJ, Hsiao CH, Lo KY, Kao TH, Wang BC, Young SJ, Tsai KS, Wu SL (2014) Noise properties of low-temperature-grown Co-doped ZnO nanorods as ultraviolet photodetectors. IEEE J Sel Top Quantum Electron 20:3800707

    Article  Google Scholar 

  • Lu MP, Song J, Lu MY, Chen MT, Gao Y, Chen LJ, Wang ZL (2009) Piezoelectric nanogenerator using p-type ZnO nanowire arrays. Nano Lett 9:1223–1227

    Article  Google Scholar 

  • Orton JW (1995) Acceptor binding energy in GaN and related alloys. Semicond Sci Technol 10:101–104

    Article  Google Scholar 

  • Pietruszka R, Witkowski BS, Gieraltowska S, Caban R, Wachnicki L, Zielony E, Gwozdz K, Bieganski P, Placzek-Popko E, Godlewski M (2015) New efficient solar cell structures based on zinc oxide nanorods. Sol Energy Mater Sol Cells 143:99–104

    Article  Google Scholar 

  • Sarma D, Das TM, Baruah S (2016) Bandgap engineering of ZnO nanostructures through hydrothermal growth. ADBU J Eng Technol 4:216–218

    Google Scholar 

  • Shen GZ, Cho JH, Yoo JK, Yi GC, Lee CJ (2005) Synthesis and optical properties of S-Doped ZnO nanostructures: nanonails and nanowires. J Phys Chem B 109:5491–5496

    Article  Google Scholar 

  • Wang ZL, Song JH (2006) Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 312:242–246

    Article  Google Scholar 

  • Wang X, Song J, Liu J, Wang ZL (2007a) Direct-current nanogenerator driven by ultrasonic waves. Science 316:102–105

    Article  Google Scholar 

  • Wang XH, Liu S, Chang P, Tang Y (2007b) Synthesis of sulfur-doped ZnO nanowires by electrochemical deposition. Mater Sci Semicond Process 10:241–245

    Article  Google Scholar 

  • Wang XD, Gao YF, Wei YG, Wang ZL (2009) Output of an ultrasonic wave-driven nanogenerator in a confined tube. Nano Res 2:177–182

    Article  Google Scholar 

  • Yang Y, Guo WX, Pradel KC, Zhu G, Zhou YS, Zhang Y, Hu YF, Lin L, Wang ZL (2012) Pyroelectric nanogenerators for harvesting thermoelectric energy. Nano Lett 12:2833–2838

    Article  Google Scholar 

  • Yoo YZ, Jin ZW, Chikyow T, Fukumura T, Kawasaki M, Koinuma H (2002) S doping in ZnO film by supplying ZnS species with pulsed-laser-deposition method. Appl Phys Lett 81:3798–3800

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Ministry of Science and Technology of Taiwan with Project Number: MOST 107-2221-E-150-032, MOST 108-2221-E-024-006, and MOST 108-2221-E-150-013-MY2. The authors would also like to thank the assistance of the Common Laboratory for Micro/Nano Science and Technology of the National Formosa University for some of the measurement equipment used in this work, the Center for Micro/Nano Science and Technology of National Cheng Kung University for device characterization, and B. W. Huang for device fabrication.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yen-Lin Chu or Liang-Wen Ji.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lam, KT., Chu, YL., Ji, LW. et al. Characterization of nanogenerators based on S-doped zinc oxide nanorod arrays. Microsyst Technol 28, 395–401 (2022). https://doi.org/10.1007/s00542-020-04863-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04863-0

Navigation