Skip to main content
Log in

Effect of material composition on noise performance of sub-micron high electron mobility transistor

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Noise figure, reflection coefficient and normalized resistance for AlxGa1−xN/GaN based sub-micron high electron mobility transistor is analytically investigated as a function of material composition from small-signal equivalent circuit over the period of C-band to X-band. A few other significant parameters like phase of both reflection coefficient and optimum impedance, average gain are studied; and critical variations are found for optimum impedance phase profile which gives maximum magnitude at a particular frequency for different material systems. Variations of noise figure and other relevance parameters are explored for an assortment of external biasing conditions and threshold parameter, and results suggests very close agreements with experimental data and also with Pospieszalski model. Phase of optimum impedance depicts peak at a particular frequency within the choice of range, and it shifts with change of material composition. Simulated results are significant in designing HEMT based RF oscillator circuits with proper amalgamation of material composition, drain and gate voltages, leakage current and threshold voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  • De T, Mohapatra M, Panda AK (2016) DC and RF performance analysis of AlGaN/GaN based HEMT. In: 2nd International conference on communication control and intelligent systems

  • Ebrahimi B, Asad M (2015) A normally-off fully AlGaN HEMT with high breakdown voltage and figure of merit for power switch applications. Superlattices Microstruct 83:819–826

    Article  Google Scholar 

  • Guo L, Yang X, Hu A, Feng Z, Lv Y, Zhang J, Cheng J, Tang N, Wang X, Ge W, Shen B (2016) Hot electron induced non-saturation current behavior at high electric field in InAlN/GaN heterostructures with ultrathin barrier. Sci Rep 6:37415

    Article  Google Scholar 

  • Kirtania SG, Aadit MNA, Alam MK (2017) 3D simulation of impact ionization induced kink effect in AlGaN/GaN HEMTs: a novel split channel design with asymmetric double gate for kink suppression. In: 3rd International conference on electrical information and communication technology

  • Kumar R, Arya SK, Ahlawat A (2014) Microwave analysis for two-dimensional C-V and noise model of AlGaN/GaN MODFET. Adv Mater Sci Eng 2014:197937

    Article  Google Scholar 

  • Lee S, Webb KJ, Tilak V, Eastman L (2003) Intrinsic noise equivalent circuit parameters for AlGaN/GaN HEMTs. IEEE Trans Microw Theory Tech 51:1567–1577

    Article  Google Scholar 

  • Lu W, Kumar V, Piner EL, Adesida I (2003) DC, RF, and microwave noise performance of AlGaN–GaN field effect transistors dependence of aluminum concentration. IEEE Trans Electron Devices 50(4):1069–1074

    Article  Google Scholar 

  • Mao S, Xu Y, Chen Y, Fu W, Zhao X, Xu R (2017) High Frequency Noise Model of AlGaN/GaN HEMTs. ECS J Solid State Sci Technol 6(11):S3072–S3077

    Article  Google Scholar 

  • Marinkoviü Z, Markovic V (2005) Accurate temperature dependent noise models of microwave transistors based on neural networks. In: 13th GaAs symposium, pp. 389–392

  • Muhea WE, Yigletu FM, Lazaro A, Iñiguez B (2017) Analytical high frequency GaN HEMT model for noise simulations. Semicond Sci Technol 32(12):125012

    Article  Google Scholar 

  • Nalli A, Raffo A, Crupi G, D’Angelo S, Resca D, Scappaviva F, Salvo G, Caddemi A, Vannini G (2015) GaN HEMT noise model based on electromagnetic simulations. IEEE Trans Microw Theory Tech 63(8):2498–2508

    Article  Google Scholar 

  • Nuttinck S, Gebara E, Laskar J, Harris M (2003) High-frequency noise in AlGaN/GaN HFETs. IEEE Microw Compon Lett 13(4):149–151

    Article  Google Scholar 

  • Panda S, Srimani S, Maji B, Mukhopadhyay AK (2013) Noise modeling & noise figure calculation of HEMT. Int J Emerg Trends Technol Comput Sci 2(4):12–15

    Google Scholar 

  • Pospieszalski MW (1989) Modeling of noise parameters of MESFET’s and MODFET’s and their frequency and temperature dependence. IEEE Trans Microw Theory Tech 37(9):1340–1350

    Article  Google Scholar 

  • Pucel RA, Haus HA, Statz H (1975) Signal and noise properties of gallium arsenide microwave field-effect transistors. Adv Electron Electron Phys 38:195–265

    Article  Google Scholar 

  • Rudolph M, Doerner R, Ngnintendem E, Heinrich W (2012) Noise modeling of GaN HEMT devices. In: 7th European microwave integrated circuit conference

  • Rudolph M, Escotte L, Doerner R (2014) GaN HEMT noise model performance under nonlinear operation. In: 9th European microwave integrated circuit conference

  • Rudolph M, Escotte L, Doerner R (2014b) Modeling nonlinear white noise in GaN HEMT Devices. Frequenz 69(1–2):47–55

    Google Scholar 

  • Sanabria C, Xu H, Palacios T, Chakraborty A, Heikman S, Mishra UK, York RA (2005) Influence of epitaxial structure in the noise figure of AlGaN/GaN HEMTs. IEEE Trans Microw Theory Tech 53(2):762–769

    Article  Google Scholar 

  • Sanabria C, Chakraborty A, Xu H, Rodwell MJ, Mishra UK, York RA (2006) The effect of gate leakage on the noise figure of AlGaN/GaN HEMTs. IEEE Electron Device Lett 27(1):19–21

    Article  Google Scholar 

  • Shen L, Chen B, Sun L, Gao J (2015) Device modeling of high electron mobility transistors: small signal and noise modeling. J Comput Theor Nanosci 12(10):3547–3555

    Article  Google Scholar 

  • van der Ziel A (1986) Noise in solid state devices and circuits, vol 1. Wiley, New York

    Google Scholar 

  • Vimala P, Vidyashree L (2016) Modeling of noise power spectral density analysis for GaN/AlGaN HEMT. J Appl Math Phys 4:1906–1915

    Article  Google Scholar 

  • Xiao-Guang H, De-Gang Z, De-Sheng J (2015) Formation of two-dimensional electron gas at AlGaN/GaN heterostructure and the derivation of its sheet density expression. Chin Phys B 24(6):067301

    Article  Google Scholar 

  • Xiao-Hua M, Min L, Lei P, Yuan-Qi J, Jing-Zhi Y, Wei-Wei C, Xin-Yu L (2014) Kink effect in current–voltage characteristics of a GaN-based high electron mobility transistor with an AlGaN back barrier. Chin Phys B 23(2):027302

    Article  Google Scholar 

  • Xu H, Sanabria C, Chini A, Keller S, Mishra U, York R (2004) A C-band high-dynamic range GaN HEMT low-noise amplifier. IEEE Microw Compon Lett 14(6):262–264

    Article  Google Scholar 

  • Xu Y, Guo Y, Wu Y, Xu R, Yan B, Lin W (2011) Accurate Modeling of Minimum Noise Figure in AlGaN/GaN High Electron Mobility Transistors. Journal of Electromagnetic Waves and Applications 25(5–6):819–832

    Article  Google Scholar 

  • Zhang L, Fu X, Du P, Cui Y, Li X, Zhang T (2018) Ka band High RF performance AlGaN/GaN HEMTs. In: IOP conference series: earth and environmental science: 2nd international symposium on resource exploration and environmental science, vol 170, pp 042021

  • Zhu JJ, Ma XH, Hou B, Chen WW, Hao Y (2014) Investigation of trap states in high Al content AlGaN/GaN high electron mobility transistors by frequency dependent capacitance and conductance analysis. AIP Adv 4:037108

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arpan Deyasi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deyasi, A., Sarkar, A. Effect of material composition on noise performance of sub-micron high electron mobility transistor. Microsyst Technol 28, 577–585 (2022). https://doi.org/10.1007/s00542-019-04742-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04742-3

Navigation