A novel CNFET based tunable memristor emulator

  • Nilay Aishwarya
  • Abhijeet Nayak
  • Indrajit Pal
  • Vikash Kumar
  • Aminul IslamEmail author
Technical Paper


This paper presents a novel carbon nanotube field effect transistor (CNFET) based memristor emulator circuit. The proposed memristor emulator circuit utilizes voltage differencing transconductance amplifier (VDTA) as an active building block. The emulator circuit employs two VDTAs, two grounded resistors, one grounded capacitor and one four-quadrant analog multiplier. The working concept along with the detailed derivation of the mathematical model of the circuit has been discussed analytically and numerically to confirm the operation of the circuit. The operation of the proposed emulator circuit, as governed by the established equations, has been verified by performing simulations using 32-nm Stanford CNFET model. Further, the robustness of the emulator circuit has been investigated by subjecting it to process and temperature variations. Variability analyses reveals significant tolerance towards aforementioned fluctuations in parameters.



  1. Alharbi AG, Fouda ME, Khalifa ZJ, Chowdhury MH (2017) Electrical nonlinearity emulation technique for current-controlled memristive devices. IEEE Access 5:5399–5409CrossRefGoogle Scholar
  2. Almudever CG, Rubio A (2015) Variability and reliability analysis of CNFET technology: impact of manufacturing imperfections. Microelectron Reliab 55(2):358–366CrossRefGoogle Scholar
  3. Biolek D, Senani R, Biolkova V, Kolka Z (2008) Active elements for analog signal processing: classification, review, and new proposals. Radioengineering 17(4):15–32Google Scholar
  4. Cam ZG, Sedef H (2017) A new floating memristance simulator circuit based on second generation current conveyor. J Circ Syst Comput 26(2):1–15CrossRefGoogle Scholar
  5. Chua LO (1971) Memristor—the missing circuit element. IEEE Trans Circ Theory 18(5):507–519CrossRefGoogle Scholar
  6. Deng J, Wong HSP (2007) A compact SPICE model for carbon nanotube field effect transistors including nonidealities and application-part II: full device model and circuit benchmarking. IEEE Trans Electron Devices 54(12):3195–3205CrossRefGoogle Scholar
  7. Elwakil AS, Fouda ME, Radwan AG (2013) A simple model of double-loop hysteresis behavior in memristive elements. IEEE Trans Circ Syst II Exp Briefs 60(8):487–491Google Scholar
  8. Gilbert B (1968) A precise four-quadrant multiplier with subnanosecond response. IEEE J Solid State Circ 3(4):365–373CrossRefGoogle Scholar
  9. Kanyal G, Kumar P, Paul SK, Kumar A (2018) OTA based high frequency tunable resistorless grounded and floating memristor emulators. AEU Int J Electron Commun 92:124–145CrossRefGoogle Scholar
  10. Kim H, Sah MP, Yang C, Cho S, Chua LO (2012) Memristor emulator for memristor circuit applications. IEEE Trans Circ Syst I Reg Pap 59(10):2422–2431MathSciNetCrossRefGoogle Scholar
  11. Kuhn KJ (2009) Moore’s law past 32 nm: future challenges in device scaling. In: Proc. int. workshop comp. elec., pp 1–6Google Scholar
  12. Kumar V, Mehra R, Islam A (2017) A CMOS active inductor based digital and analog dual tuned voltage-controlled oscillator. In: Microsystem technologies, pp 1–13Google Scholar
  13. Maundy B, Elwakil A, Psychalinos C (2018) Simple MOS-based circuit designed to show pinched hysteresis behavior. Int J Circ Theory Appl 46(5):1123–1128CrossRefGoogle Scholar
  14. Mehra R, Kumar V, Islam A (2018) Reliable and Q-enhanced floating active inductors and their application in RF bandpass filters. IEEE Access 6:48181–48194CrossRefGoogle Scholar
  15. Pal I, Islam A (2018) Circuit-level technique to design variation- and noise-aware reliable dynamic logic gates. IEEE Trans Device Mater Reliab 18(2):224–239CrossRefGoogle Scholar
  16. Petrovic PB (2018) Floating incremental/decremental flux-controlled memristor emulator circuit based on single VDTA. Analog Integr Circ Signal Process 96(3):417–433CrossRefGoogle Scholar
  17. Ranjan RK, Rani N, Pal R, Paul SK, Kanyal G (2017) Single CCTA based high frequency floating and grounded type of incremental/decremental memristor emulator and its application. Microelectron J 60:119–128CrossRefGoogle Scholar
  18. Saha SK (2014) Compact MOSFET modeling for process variability-aware VLSI circuit design. IEEE Access 2:104–115CrossRefGoogle Scholar
  19. Sánchez-López C, Aguila-Cuapio LE (2017) A 860 kHz grounded memristor emulator circuit. AEU Int J Electron Commun 73:23–33CrossRefGoogle Scholar
  20. Sánchez-López C, Mendoza-López J, Carrasco-Aguilar MA, Muñiz-Montero C (2014) A floating analog memristor emulator circuit. IEEE Trans Circ Syst II Exp Briefs 61(5):309–313Google Scholar
  21. Sánchez-López C, Carrasco-Aguilar MA, Muñiz-Montero C (2015) A 16 Hz–160 kHz memristor emulator circuit. AEU Int J Electron Commun 69(9):1208–1219CrossRefGoogle Scholar
  22. Semiconductor Industry Association (2009) International technology roadmap for semiconductors [Online].
  23. Sozen H, Cam U (2016) Electronically tunable memristor emulator circuit. Analog Integr Circ Signal Process 89(3):655–663CrossRefGoogle Scholar
  24. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRefGoogle Scholar
  25. Williams RS (2008) How We found the missing memristor. IEEE Spectr 45(12):28–35CrossRefGoogle Scholar
  26. Wirnshofer M (2013) Variation-aware adaptive voltage scaling for digital CMOS circuits, Springer Ser. advanced microelectronics, vol 41. Springer, DordrechtGoogle Scholar
  27. Yu DS, Liang Y, Chen H, Lu HHC (2013) Design of a practical memcapacitor emulator without grounded restriction. IEEE Trans Circ Syst II 60(4):207–211Google Scholar
  28. Yunus B, Abdullah Y, Firat K (2017) Memristor emulator with tunable characteristic and its experimental results. AEU Int J Electron Commun 81:99–104CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Nilay Aishwarya
    • 1
  • Abhijeet Nayak
    • 1
  • Indrajit Pal
    • 1
  • Vikash Kumar
    • 2
  • Aminul Islam
    • 1
    Email author
  1. 1.Department of ECEBirla Institute of TechnologyRanchiIndia
  2. 2.Department of ECEPresidency UniversityBangaloreIndia

Personalised recommendations