Skip to main content
Log in

Improvement of dye sensitized solar cell photovoltaic performance by using a ZnO-semiconductor processed by reaction bonded

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this work activation of ZnO powders was achieved by using high energy ball milling combined with reaction bonded process. Herein, highly active ZnO photocatalyst was synthesized by mixing zinc oxide powder (ZnOraw) with the metallic Zn powder in a planetary-type mill. Results of X-ray diffraction of the synthesized ZnO, shown reflections peaks attributed to the wurtzite crystalline structure of ZnO with crystallite size around 24 nm. To evaluate the effect of mechanochemical activation of ZnO for the dye sensitized solar cell performance, the obtained photocatalysts was used as photoanode and its electrical performance was measured. From the V–I curve it was found that the short circuit current (Jsc) for the ZnOraw was 2.93 mA cm−2 and for the activated-ZnO a Jsc of 7.5 mA cm−2, the short circuit current was improved in approximately three times. Concluding that solid-state reaction is a facile and promising method for the large-scale production of activated-ZnO photocatalytic materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bhatia S, Verma N (2017) Photocatalytic activity of ZnO nanoparticles with optimization of defects. Mater Res Bull 95:468–476

    Google Scholar 

  • Cabanas-Polo S, Boccaccini AR (2016) Electrophoretic deposition of nanoscale TiO2: technology and applications. J Eur Ceram Soc 36:265–283

    Google Scholar 

  • Callister WD (2007) Materials science and engineering: an introduction. Wiley, Hoboken

    Google Scholar 

  • Canto-Aguilar EJ, Rodríguez-Pérez M, García-Rodríguez R, Lizama-Tzec FI, De Denko AT, Osterloh FE et al (2017) ZnO-based dye-sensitized solar cells: effects of redox couple and dye aggregation. Electrochim Acta 258:396–404

    Google Scholar 

  • Chen Z, Tang Y, Zhang L, Luo L (2006) Electrodeposited nanoporous ZnO films exhibiting enhanced performance in dye-sensitized solar cells. Electrochim Acta 51:5870–5875

    Google Scholar 

  • Chen X, Tang Y, Liu W (2017a) Efficient dye-sensitized solar cells based on nanoflower-like ZnO photoelectrode. Molecules 22:1284

    Google Scholar 

  • Chen W-C, Nachimuthu S, Jiang J-C (2017b) Revealing the influence of cyano in anchoring groups of organic dyes on adsorption stability and photovoltaic properties for dye-sensitized solar cells. Sci Rep 7:4979

    Google Scholar 

  • Chiba Y, Islam A, Watanabe Y, Komiya R, Koide N, Han L (2006) Dye-sensitized solar cells with conversion efficiency of 11.1%. Jpn J Appl Phys 45:L638–L640

    Google Scholar 

  • Claudia CV, Danish P, Annie W, Derek V, Tung P, Ashok M (2018) Characterisation of the heterojunction microstructure for electrodeposited vertical ZnO nanorods on CVD-graphene. Mater Res Express 5:085031

    Google Scholar 

  • Cullity BD, Stock SR (2001) Elements of X-ray diffraction, 3rd edn. Prentice Hall, Upper Saddle River

    Google Scholar 

  • Fang X, Li Y, Zhang S, Bai L, Yuan N, Ding J (2014) The dye adsorption optimization of ZnO nanorod-based dye-sensitized solar cells. Sol Energy 105:14–19

    Google Scholar 

  • Farooqi MMH, Srivastava RK (2016) Enhanced UV–vis photoconductivity and photoluminescence by doping of samarium in ZnO nanostructures synthesized by solid state reaction method. Optik 127:3991–3998

    Google Scholar 

  • Golsheikh AM, Kamali KZ, Huang NM, Zak AK (2018) Effect of calcination temperature on performance of ZnO nanoparticles for dye-sensitized solar cells. Powder Technol 329:282–287

    Google Scholar 

  • Guillén E, Casanueva F, Anta JA, Vega-Poot A, Oskam G, Alcántara R et al (2008) Photovoltaic performance of nanostructured zinc oxide sensitised with xanthene dyes. J Photochem Photobiol A Chem 200:364–370

    Google Scholar 

  • Guillén E, Peter LM, Anta J (2011) Electron transport and recombination in ZnO-based dye-sensitized solar cells. J Phys Chem C 115:22622–22632

    Google Scholar 

  • Hasan Farooqi MM, Srivastava RK (2017) Structural, optical and photoconductivity study of ZnO nanoparticles synthesized by annealing of ZnS nanoparticles. J Alloys Compd 691:275–286

    Google Scholar 

  • Hongsith K, Hongsith N, Wongratanaphisan D, Gardchareon A, Phadungdhitidhada S, Choopun S (2015) Efficiency enhancement of ZnO dye-sensitized solar cells by modifying photoelectrode and counterelectrode. Energy Proc 79:360–365

    Google Scholar 

  • Horiuchi H, Katoh R, Hara K, Yanagida M, Murata S, Arakawa H et al (2003) Electron injection efficiency from excited N3 into nanocrystalline ZnO films: effect of (N3–Zn2+) aggregate formation. J Phys Chem B 107:2570–2574

    Google Scholar 

  • Hsu HY, Tongol BJ (2013) Electrochemical and surface characteristics of carbon-supported PtSn electrocatalysts for ethanol electro-oxidation: possible application for inkjet ink formulations. Adv Nat Sci Nanosci 4:015012

    Google Scholar 

  • Jeng M-J, Wung Y-L, Chang L-B, Chow L (2013) Particle size effects of TiO2 layers on the solar efficiency of dye-sensitized solar cells. Int J Photoenergy 2013:1–9

    Google Scholar 

  • Joseph S, Mathew B (2015) Microwave-assisted green synthesis of silver nanoparticles and the study on catalytic activity in the degradation of dyes. J Mol Liq 204:184–191

    Google Scholar 

  • Jung M-H (2017) High efficiency dye-sensitized solar cells based on the ZnO nanoparticle aggregation sphere. Mater Chem Phys 202:234–244

    Google Scholar 

  • Kahouli M, Barhoumi A, Bouzid A, Al-Hajry A, Guermazi S (2015) Structural and optical properties of ZnO nanoparticles prepared by direct precipitation method. Superlattice Microstruct 85:7–23

    Google Scholar 

  • Khan MZH, Al-Mamun MR, Halder PK, Aziz MA (2017) Performance improvement of modified dye-sensitized solar cells. Renew Sustain Energy Rev 71:602–617

    Google Scholar 

  • Liou Y-J, Hsiao P-T, Chen L-C, Chu Y-Y, Teng H (2011) Structure and electron-conducting ability of TiO2 films from electrophoretic deposition and paste-coating for dye-sensitized solar cells. J Phys Chem C 115:25580–25589

    Google Scholar 

  • Lizama-Tzec FI, Garcia-Rodriguez R, Rodriguez-Gattorno G, Canto-Aguilar EJ, Vega-Poot AG, Heredia-Cervera BE et al (2016) Influence of morphology on the performance of ZnO-based dye-sensitized solar cells. RSC Adv 6:37424–37433

    Google Scholar 

  • Moussawi RN, Patra D (2016) Modification of nanostructured ZnO surfaces with curcumin: fluorescence-based sensing for arsenic and improving arsenic removal by ZnO. RSC Adv 6:17256–17268

    Google Scholar 

  • Pech-Rodríguez W, Calles-Arriaga C, González-Quijano D, Vargas-Gutiérrez G, Morais C, Napporn T et al (2018a) Electrocatalysis of the ethylene glycol oxidation reaction and in situ Fourier-transform infared study on PtMo/C electrocatalysts in alkaline and acid media. J Power Sources 375:335–344

    Google Scholar 

  • Pech-Rodríguez WJ, Rocha-Rangel E, Calles-Arriaga CA, Vargas-Gutiérrez G, Rodríguez-Varela FJ (2018b) Study of the electrophoretic deposition copper–carbon nanotubes composite coatings in deep eutectic solvent using a Taguchi experimental design approach. Adv Appl Ceram 117:1–7

    Google Scholar 

  • Qifeng Z, S DC, Xiaoyuan Z, Guozhong C (2009) ZnO nanostructures for dye-sensitized solar cells. Adv Mater (Weinheim, Germany) 21:4087–4108

    Google Scholar 

  • Romanyuk V, Dmitruk N, Karpyna V, Lashkarev G, Popovych V, Dranchuk M et al (2016) Optical and electrical properties of highly doped ZnO:Al films deposited by atomic layer deposition on si substrates in visible and near infrared region. Acta Phys Pol A 129:A36–A40

    Google Scholar 

  • Salavati-Niasari M, Mir N, Davar F (2009) ZnO nanotriangles: synthesis, characterization and optical properties. J Alloys Compd 476:908–912

    Google Scholar 

  • Saxena V, Veerender P, Gusain A, Jha P, Singh J, Koiry SP et al (2013) Co-sensitization of N719 and RhCL dyes on carboxylic acid treated TiO2 for enhancement of light harvesting and reduced recombination. Org Electron 14:3098–3108

    Google Scholar 

  • Singh P, Kumar A, Deepak Kaur D (2007) Growth and characterization of ZnO nanocrystalline thin films and nanopowder via low-cost ultrasonic spray pyrolysis. J Cryst Growth 306:303–310

    Google Scholar 

  • Sönmezoğlu S, Akman E (2014) Improvement of physical properties of ZnO thin films by tellurium doping. Appl Surf Sci 318:319–323

    Google Scholar 

  • SreĆKoviĆ T, Bernik S, ČEh M, VojisavljeviĆ K (2008) Microstructural characterization of mechanically activated ZnO powders. J Microsc 232:639–642

    MathSciNet  Google Scholar 

  • Tang Q-L, Luo Q-H (2013) Adsorption of CO2 at ZnO: a surface structure effect from DFT + U calculations. J Phys Chem C 117:22954–22966

    Google Scholar 

  • Taylor JH, Amberg CH (1961) Infrared spectra of gases chemisorbed on zinc oxide: I. CO and CO2. Can J Chem 39:535–539

    Google Scholar 

  • Ullattil SG, Periyat P (2017) Microwave-power induced green synthesis of randomly oriented mesoporous anatase TiO2 nanoparticles for efficient dye sensitized solar cells. Sol Energy 147:99–105

    Google Scholar 

  • Wang L, Meng H, Shen PK, Bianchini C, Vizza F, Wei Z (2011) In situ FTIR spectroelectrochemical study on the mechanism of ethylene glycol electrocatalytic oxidation at a Pd electrode. Phys Chem Chem Phys 13:2667–2673

    Google Scholar 

  • Wang H, Wang B, Yu J, Hu Y, Xia C, Zhang J et al (2015) Significant enhancement of power conversion efficiency for dye sensitized solar cell using 1D/3D network nanostructures as photoanodes. Sci Rep 5:9305

    Google Scholar 

  • Xie Y, Zhou X, Mi H, Ma J, Yang J, Cheng J (2018) High efficiency ZnO-based dye-sensitized solar cells with a 1H,1H,2H,2H-perfluorodecyltriethoxysilane chain barrier for cutting on interfacial recombination. Appl Surf Sci 434:1144–1152

    Google Scholar 

  • Xue B, Zou Y (2018) Uniform distribution of ZnO nanoparticles on the surface of grpahene and its enhanced photocatalytic performance. Appl Surf Sci 440:1123–1129

    Google Scholar 

  • Yang YJ, Li W (2014) CTAB functionalized graphene oxide/multiwalled carbon nanotube composite modified electrode for the simultaneous determination of ascorbic acid, dopamine, uric acid and nitrite. Biosens Bioelectron 56:300–306

    Google Scholar 

  • Yin S, Shen PK, Song S, Jiang SP (2009) Functionalization of carbon nanotubes by an effective intermittent microwave heating-assisted HF/H2O2 treatment for electrocatalyst support of fuel cells. Electrochim Acta 54:6954–6958

    Google Scholar 

  • Yin S, Luo L, Xu C, Zhao Y, Qiang Y, Mu S (2012) Functionalizing carbon nanotubes for effective electrocatalysts supports by an intermittent microwave heating method. J Power Sources 198:1–6

    Google Scholar 

Download references

Acknowledgements

Authors appreciate the support of the Mexican National Council for Science and Technology (CONACYT) for the scholarship provided to C.E.V.G. The authors acknowledge Dr. Francisco Javier Rodríguez Varela and MSc Perla Cecilia Meléndez González for their helpful suggestion during this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Rocha-Rangel.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Velazquez-Gonzalez, C.E., Armendariz-Mireles, E.N., Pech-Rodriguez, W.J. et al. Improvement of dye sensitized solar cell photovoltaic performance by using a ZnO-semiconductor processed by reaction bonded. Microsyst Technol 25, 4567–4575 (2019). https://doi.org/10.1007/s00542-019-04476-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04476-2

Navigation