Skip to main content

Advertisement

Log in

On an equivalent model of multi-layer piezoelectric actuators for facilitating finite element simulations

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Multi-layer piezoelectric actuators (MPA) are widely used precision actuators. For design and optimization of MPA-based applications with a complex structure, finite element method, which can achieve a high computation accuracy, is widely applied in finite element analysis software for computation and analysis. However, MPA are commonly made of hundreds of thin piezo layers and the piezoelectric material involves electro-mechanical coupled fields, which makes it cumbersome to directly implement them in finite element analysis software and hard to solve. In this paper, it is shown that the multi-layer and electro-mechanical coupled-field MPA can be simply considered as a homogeneous mechanical solid with a pair of equivalent forces acting on the two ends. This equivalent model can greatly facilitate the implementation of MPA in finite element analysis software and cut down computational cost for design and optimization of MPA-based applications. The rationale behind the equivalent model is unveiled and the equivalent force input is derived with respect to voltage input in terms of the standard 3D piezoelectric coefficients. The effectiveness of the equivalent model is further verified by conventional model of MPA via FE simulations in ANSYS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Adriaens H, De Koning W, Banning R (2000) Modeling piezoelectric actuators. IEEE/ASME Trans Mechatron 5:331–341

    Article  Google Scholar 

  • Ahmad I, Abdurraqeeb AM (2017) Tracking control of a piezoelectric actuator with hysteresis compensation using RST digital controller. Microsyst Technol 23:2307–2317

    Article  Google Scholar 

  • Avdiaj S, Setina J, Syla N (2009) Modeling of the piezoelectric effect using the finite-element method (FEM). Mater Tehnol 43:283–291

    Google Scholar 

  • Bazghaleh M, Grainger S, Mohammadzaheri M, Cazzolato B, Lu TF (2013) A digital charge amplifier for hysteresis elimination in piezoelectric actuators. Smart Mater Struct 22:075016

    Article  Google Scholar 

  • Bloomfield PE (2002) Multilayer transducer transfer matrix formalism. IEEE T Ultrason Ferr 49:1300–1311

    Article  Google Scholar 

  • Chen XB, Zhang QS, Kang D, Zhang WJ (2008) On the dynamics of piezoactuated positioning system. Rev Sci Instrum 79:116101

    Article  Google Scholar 

  • Cheng T, He M, Li H, Lu X, Zhao H, Gao H (2017) A novel trapezoid-type stick-slip piezoelectric linear actuator using right circular flexure hinge mechanism. IEEE Trans Ind Electron 64:5545–5552

    Article  Google Scholar 

  • Goldfarb M, Celanovic N (1997) Modeling piezoelectric stack actuators for control of micromanipulation. IEEE Control Syst 17:69–79

    Article  Google Scholar 

  • Krimholtz R, Leedom DA, Matthaei GL (1970) New equivalent circuits for elementary piezoelectric transducers. Electron Lett 6:398–399

    Article  Google Scholar 

  • Leang KK, Devasia S (2007) Feedback-linearized inverse feedforward for creep, hysteresis, and vibration compensation in AFM piezoactuators. IEEE Trans Control Syst Technol 15:927–935

    Article  Google Scholar 

  • Lee J, Kwon WS, Kim KS, Kim S (2011) A novel smooth impact drive mechanism actuation method with dual-slider for a compact zoom lens system. Rev Sci Instrum 82:085105

    Article  Google Scholar 

  • Li J, Huang H, Zhao H (2018) A piezoelectric-driven linear actuator by means of coupling motion. IEEE Trans Ind Electron 65:2458–2466

    Article  Google Scholar 

  • Liu X, Wang J, Li W (2018) Dynamic analytical solution of a piezoelectric stack utilized in an actuator and a generator. Appl Sci 8:1779

    Article  Google Scholar 

  • Mason WP (1948) Electromechanical transducers and wave filters, 2nd edn. D. Van Nostrand Company, Inc., Princeton, pp 200–399

    Google Scholar 

  • Meitzler A, Tiersten H, Warner AW et al (1988) 176-1987-IEEE standard on piezoelectricity. IEEE Ultrasonics, Ferroelectrics, and Frequency Control Society INSPEC Accession Number: 3237638. https://doi.org/10.1109/ieeestd.1988.79638

  • Miri N, Mohammadzaheri M, Chen L (2015) An enhanced physics-based model to estimate the displacement of piezoelectric actuators. J Intell Mater Syst Struct 26:1442–1451

    Article  Google Scholar 

  • Morita T, Niino T, Asama H, Tashiro H (2001) Fundamental study of a stacked lithium niobate transducer. Jpn J Appl Phys 40:3801

    Article  Google Scholar 

  • Morris SA, Hutchens CG (1986) Implementation of Mason’s model on circuit analysis programs. IEEE T Ultrason Ferr 33:295–298

    Article  Google Scholar 

  • Nikishkov GP (2004) Introduction to the finite element method. University of Aizu, Aizu, pp 15–31

    Google Scholar 

  • Peng Y, Ito S, Sakurai Y, Shimizu Y, Gao W (2013) Construction and verification of a linear-rotary microstage with a millimeter-scale range. Int J Precis Eng Manuf 14:1623–1628

    Article  Google Scholar 

  • Polit S, Dong J (2011) Development of a high-bandwidth XY nanopositioning stage for high-rate micro-/nanomanufacturing. IEEE/ASME Trans Mechatron 16:724–733

    Article  Google Scholar 

  • Redwood M (1961) Transient performance of a piezoelectric transducer. J Acoust Soc Am 33:527–536

    Article  Google Scholar 

  • Shimizu Y, Peng Y, Kaneko J, Azuma T, Ito S, Gao W, Lu T-F (2013) Design and construction of the motion mechanism of an XY micro-stage for precision positioning. Sens Actuat A Phys 201:395–406

    Article  Google Scholar 

  • Sun L, Wang J, Rong W, Li X, Bao H (2008) A silicon integrated micro nano-positioning XY-stage for nano-manipulation. J Micromech Microeng 18:125004

    Article  Google Scholar 

  • Tanikawa T, Arai T (1999) Development of a micro-manipulation system having a two-fingered micro-hand. IEEE T Robot Autom 15:152–162

    Article  Google Scholar 

  • Tian Y, Zhang D, Shirinzadeh B (2011) Dynamic modelling of a flexure-based mechanism for ultra-precision grinding operation. Precis Eng 35:554–565

    Article  Google Scholar 

  • Wang J, Shi Z, Han Z (2013) Analytical solution of piezoelectric composite stack transducers. J Intell Mater Syst Struct 24:1626–1636

    Article  Google Scholar 

  • Wang S, Rong W, Wang L, Pei Z, Sun L (2017) Design, analysis and experimental performance of a novel stick-slip type piezoelectric rotary actuator based on variable force couple driving. Smart Mater Struct 26:055005

    Article  Google Scholar 

  • Xu Q, Li Y, Xi N (2009) Design, fabrication, and visual servo control of an XY parallel micromanipulator with piezo-actuation. IEEE Trans Autom Sci Eng 6:710

    Article  Google Scholar 

  • Yong YK, Mohemani SR (2013) Design of an inertially counterbalanced Z-nanopositioner for high-speed atomic force microscopy. IEEE T Nanotechnol 12:137–145

    Article  Google Scholar 

  • Zhang Y, Lu TF, Peng Y (2015) Three-port equivalent circuit of multi-layer piezoelectric stack. Sens Actuators A Phys 236:92–97

    Article  Google Scholar 

  • Zhang Y, Lu TF, Al-Sarawi S (2016) Formulation of a simple distributed-parameter model of multilayer piezoelectric actuators. J Intell Mater Syst Struct 27:1485–1491

    Article  Google Scholar 

  • Zhang Y, Tu Z, Lu TF, Al-Sarawi S (2017a) A simplified transfer matrix of multi-layer piezoelectric stack. J Intell Mater Syst Struct 28:595–603

    Article  Google Scholar 

  • Zhang Y, Lu TF, Gao W (2017b) Equivalent homogeneous model of D31-mode longitudinal piezoelectric transducers. J Intell Mater Syst Struct 28:2651–2658

    Article  Google Scholar 

  • Zhang Y, Peng Y, Sun Z, Yu H (2018) A novel stick–slip piezoelectric actuator based on a triangular compliant driving mechanism. IEEE Trans Ind Electron 1:1. https://doi.org/10.1109/tie.2018.2868274

    Article  Google Scholar 

  • Zubir MNM, Shirinzadeh B, Tian Y (2009) Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sens Actuators A Phys 150:257–266

    Article  Google Scholar 

Download references

Acknowledgements

This research is funded by the China Postdoctoral Science Foundation (Grant no. 2017M622624) and National Natural Science Foundation of China (Grant nos. 61473093 and U1701266). Besides, the authors would like to thank the School of Mechanical Engineering, University of Adelaide, Australia for providing the equipment, facilities and assistances for this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yangkun Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Y., Lu, TF. On an equivalent model of multi-layer piezoelectric actuators for facilitating finite element simulations. Microsyst Technol 25, 4455–4464 (2019). https://doi.org/10.1007/s00542-019-04464-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04464-6

Navigation