Advertisement

Optical and electrical properties of ZnO/Mo/ZnO multilayer films processed at different annealing temperatures

  • Min-Wen Wang
  • Tao-Hsing ChenEmail author
  • Hao-De Su
  • Yu-Sheng Huang
Technical Paper
  • 17 Downloads

Abstract

ZnO/Mo/ZnO transparent conductive thin films are deposited on Corning glass substrates using an RF magnetron sputtering system. The optical and electrical properties of the thin films are then examined following annealing for 40 min at temperatures ranging from 200 to 450 °C. It is shown that the resistivity of the ZnO/Mo/ZnO films has a low and reducing value at annealing temperatures up to 300 °C. However, the resistivity increases dramatically as the annealing temperature is further increased to 450 °C. The average transmittance of the annealed films generally increases with an increasing annealing temperature as the result of a larger grain size. For an annealing temperature of 450 °C, the maximum transmittance is equal to approximately 85%. Overall, the results suggest that the optimal annealing temperature for the present ZnO/Mo/ZnO films is 300 °C, which results in an electrical resistivity of 6.44 × 10−3 Ω-cm and an optical transmittance of 80%.

Keywords

ZnO/Mo/ZnO multilayer film Sputtering Transmittance Electrical properties Annealing 

Notes

Acknowledgements

The authors would like to express their thanks to the Ministry of Science and Technology, Taiwan, for the financial support provided to this study under Contract No. 106-2628-E-992-302-MY3.

References

  1. Chen TH, Chen TY (2015) Effects of annealing temperature on properties of Ti–Ga–doped ZnO films deposited on flexible substrates. Nanomaterials 5:1831–1839CrossRefGoogle Scholar
  2. Chen TH, Jiang BL (2016) Optical and electronic properties of Mo:ZnO thin films deposited using RF magnetron sputtering with different process parameters. Opt Quant Electron 48(2):77–1–77–9Google Scholar
  3. Chen TH, Yang CL (2016) The Mg doping GZO thin film for optical and electrical application by using RF magnetron sputtering. Opt Quant Electron 48:533-1–533-9Google Scholar
  4. Chen TH, Cheng TC, Hu ZR (2013) The electrical and optical properties of AZO thin film under different post-annealing temperatures. Microsyst Technol 19:1787–1790CrossRefGoogle Scholar
  5. Chen TH, Jiang BL, Huang CT (2017) The optical and electrical properties of MZO transparent conductive thin films on flexible substrate. Smart Sci 5:53–60CrossRefGoogle Scholar
  6. Chougule MA, Nalage SR, Shashwati S, Patil VB (2014) Development of nanostructured ZnO thin film sensor for NO2 detection. J Exp Nanosci 9(5):482–492CrossRefGoogle Scholar
  7. Ginzburg P, Roth DJ, Nasir ME, Segovia P, Krasavin AV, Levitt J, Hirvonen LM, Wells B, Suhling K, Richards D, Podolskiy VA, Zayats AV (2017) Spontaneous emission in non-local materials. Light-Sci Appl 6:e16273-1–e16273-10CrossRefGoogle Scholar
  8. Gong TK, Heo SB, Kim D (2016) Effect of post-deposition annealing on the structural, optical and electrical properties of ZTO/Ag/ZTO tri-layered films. Ceram Int 42:12341–12344CrossRefGoogle Scholar
  9. Gu XQ, Zhu LP, Cao L, Ye ZZ, He HP, Chu PK (2011) Optical and electrical properties of ZnO: Al thin films synthesized by low-pressure pulsed laser deposition. Mater Sci Semicond Process 14:48–51CrossRefGoogle Scholar
  10. Jug K, Tikhomirov VA (2008) Influence of intrinsic defects on the properties of zinc oxide. J Comput Chem 29:2250–2254CrossRefGoogle Scholar
  11. Kim DS, Joo JH, Ho WJ (2017) Characteristics of VUV ionizer in a vacuum chamber of flat panel displays. J Electrost 90:54–56CrossRefGoogle Scholar
  12. Knut R, Lindblad R, Grachey S, Faou JY, Gorgoi M, Rensmo H, Sondergard E, Karis O (2014) Reactive ZnO/Ti/ZnO interfaces studied by hard x-ray photoelectron spectroscopy. J Appl Phys 115:043714CrossRefGoogle Scholar
  13. Lee BS, Joo YH, Kim CI (2015) The optical and electrical characteristics for ZnO/Al/ZnO multilayer films deposited by RF sputtering. J Nanoelectron Optoelectron 10:402–407CrossRefGoogle Scholar
  14. Lewis BG, Paine DC (2000) Applications and processing of transparent conducting oxides. MRS Bull 25(8):22–27CrossRefGoogle Scholar
  15. Liu WS, Hsieh WT, Chen SY, Huang C (2018) Improvement of CIGS solar cells with high performance transparent conducting Ti-doped GaZnO thin films. Sol Energy 174:83–96CrossRefGoogle Scholar
  16. Mosbah A, Aida MS (2012) Influence of deposition temperature on structural, optical and electrical properties of sputtered Al doped ZnO thin films. J Alloys Compd 515:149–153CrossRefGoogle Scholar
  17. Pan F, Tao K, Du Y, Liu BX (1995) Interface reactions of an Ag/Cr/AlN sandwich during annealing between 250 and 650 °C. Thin Solid Films 269:47–50CrossRefGoogle Scholar
  18. Pan Z, Xiao Y, Tian X, Wu S, Chen C, Deng J, Xiao C, Hu G, Wei Z (2014) Effect of annealing on the structures and properties of Al and F co-doped ZnO nanostructures. Mater Sci Semicond Process 17:162–167CrossRefGoogle Scholar
  19. Rasheed HS, Ahmed NM, Matjafri MZ, Sabah FA, Al-Rawi HN (2016) The effect of the annealing on the properties of ZnO/Cu/ZnO multilayer structures. Proc Chem 19:38–44CrossRefGoogle Scholar
  20. Said LB, Inoubli A, Bouricha B, Amlouk M (2017) High Zr doping effects on the microstructural and optical properties of Mn3O4 thin films along with ethanol sensing. Spectrochim Acta A-Mol 171:487–798CrossRefGoogle Scholar
  21. Sarma B, Sarma BK (2018)  Role of residual stress and texture of ZnO nanocrystals on electro-optical properties of ZnO/Ag/ZnO multilayer transparent conductors. J Alloy Compud 734:210–219CrossRefGoogle Scholar
  22. Schultealbert C, Baur T, Schütze A, Böttcher S, Sauerwald T (2017) A novel approach towards calibrated measurement of trace gases using metal oxide semiconductor sensors. Sens Actuator B-Chem 239:390–396CrossRefGoogle Scholar
  23. Seo I, Ryu SO (2015) Characterization of transparent ZnO/Al/ZnO multilayer electrodes for applications in organic solar cells. J Korean Phys Soc 66:790–793CrossRefGoogle Scholar
  24. Shan F, Kim BL, Liu GX, Liu ZF, Sohn JY, Lee WJ, Shin BC, Yu YS (2004) Blueshift of near band edge emission in Mg doped ZnO thin films and aging. J Appl Phys 95:4772CrossRefGoogle Scholar
  25. Shrestha PK, Chun YT, Chu D (2015) A high-resolution optically addressed spatial light modulator based on ZnO nanoparticles. Light-Sci Appl 4:e259-1–e259-7CrossRefGoogle Scholar
  26. Socol M, Preda N, Breazu C, Florica C, Costas A, Istrate CM, Stanculescu A, Girtan M, Gherendi F (2018) Organic heterostructures obtained on ZnO/Ag/ZnO electrode. Vacuum 154:366–370CrossRefGoogle Scholar
  27. Su YH, Ke YF, Cai SL, Yao Q (2012) Surface plasmon resonance of layer-by-layer gold nanoparticles induced photoelectric current in environmentally-friendly plasmon-sensitized solar cell. Light-Sci Appl 1:e14-1–e14-5CrossRefGoogle Scholar
  28. Sung YH, Jung PH, Han KH, Kim YD, Kim JJ, Lee H (2017) Improved out-coupling efficiency of organic light emitting diodes fabricated on a TiO2 planarization layer with embedded Si oxide nanostructures. Opt Mater 72:828–832CrossRefGoogle Scholar
  29. Triambulo RE, Cheong HG, Lee GH, Yi IS, Park JW (2015) A transparent conductive oxide electrode with highly enhanced flexibility achieved by controlled crystallinity by incorporating Ag nanoparticles on substrates. J Alloy Compd 620:340–349CrossRefGoogle Scholar
  30. Tu SL, Chen TH, Su YH, Yang JH (2016) Optoelectronic properties or morning glory as dye on TiO2 thin film. Opt Quantum Electron 48:92-1–92-9CrossRefGoogle Scholar
  31. Vyas S (2018) A short review on: optimization techniques of ZnO based thin film transistors. Chin J Phys 56:117–124CrossRefGoogle Scholar
  32. Wienke J, van der Zanden B, Tijssen M, Zeman M (2008) Performance of spray-deposited ZnO: in layers as front electrodes in thin-film silicon solar cells. Sol Energy Mater Sol Cells 92:884–890CrossRefGoogle Scholar
  33. Wu HW, Chu CH (2013) Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by RF magnetron sputtering. Mater Lett 105:65–67CrossRefGoogle Scholar
  34. You RW, Fu YP (2017) Zinc sulfide buffer layer for CIGS solar cells prepared by chemical bath deposition. Adv Technol Innov 2(3):95–98Google Scholar
  35. Zheng ZB, Li JT, Ma T, Fang HL, Ren WC, Chen J, She JC, Zhang Y, Liu F, Chen HJ, Deng SZ, Xu NS (2017) Tailoring of electromagnetic field localizations by two-dimensional graphene nanostructures. Light-Sci Appl 6:e17057-1–e17057-8CrossRefGoogle Scholar
  36. Zhou X, Xu J, Yang L, Zhu G, Yu Z (2015) Effects of tin content on structure, properties, electrical repeatability, uniformity and stability of high sheet resistance ITO thin films for touch panels. J Mater Sci Mater Electron 26:6954–6960CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringNational Kaohsiung University of Science and TechnologyKaohsiungTaiwan

Personalised recommendations