Skip to main content

Advertisement

Log in

Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The challenges for high-strength adhesive-free sealing of thermoplastic microfluidics have impeded commercialization. We present the technique of gas-assisted thermal bonding (GATB) for joining thermoplastic surfaces at elevated temperatures to produce microfluidic devices with low distortion. In this technique a pressurized gas is used to supply the force to bond the two substrates rather than relying on direct contact of thermoplastics with a rigid press. Mechanical characterization tests were performed to analyze and optimize the effect of GATB pressure and temperature on the bonding strength of laminated polymethyl-methacrylate (PMMA) membranes. Tensile tests on PMMA membranes subjected to GATB process conditions examined the effects of these conditions on the single membrane’s characteristics. Adhesive strength was assessed on thin PMMA strips bonded together by GATB in lap shear and T-peel test configurations. The maximum lap shear and peel strength were found to occur at the lowest tested pressure of 1.17 MPa based on bonding experiments at 160 °C and 180 °C, respectively. Thereafter, the GATB is compared with the conventional plate-to-plate method to bond a capping sheet on pre-fabricated microchannels. Channel deformation is quantified by cross-section imaging before and after the sealing experiments. It was found that GATB enables low-distortion microchannels with higher uniformity at elevated temperatures, providing a solution for adhesive-free manufacturing of thermoplastic-based microfluidic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ballarin FM, Blackledge TA, Davis C, Nicole L, Frontini PM, Abraham GA, Wong SC (2013) Effect of topology on the adhesive forces between electrospun polymer fibers using a T-peel test. Polym Eng Sci 53(10):2219–2227

    Google Scholar 

  • Becker H, Gärtner C (2000) Polymer microfabrication methods for microfluidic analytical applications. Electrophoresis 21(1):12–26

    Article  Google Scholar 

  • Becker H, Gärtner C (2008) Polymer microfabrication technologies for microfluidic systems. Anal Bioanal Chem 390(1):89–111

    Article  Google Scholar 

  • Becker H, Locascio LE (2002) Polymer microfluidic devices. Talanta 56(2):267–287

    Article  Google Scholar 

  • Berthier E, Young EW, Beebe D (2012) Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 12(7):1224–1237

    Article  Google Scholar 

  • Boiko YM, Prud’Homme RE (1997) Bonding at symmetric polymer/polymer interfaces below the glass transition temperature. Macromolecules 30(12):3708–3710

    Article  Google Scholar 

  • Brown L, Koerner T, Horton JH, Oleschuk RD (2006) Fabrication and characterization of poly(methylmethacrylate) microfluidic devices bonded using surface modifications and solvents. Lab Chip 6(1):66–73

    Article  Google Scholar 

  • Carlborg CF, Haraldsson T, Öberg K, Malkoch M, van der Wijngaart W (2011) Beyond PDMS: off-stoichiometry thiol–ene (OSTE) based soft lithography for rapid prototyping of microfluidic devices. Lab Chip 11(18):3136–3147

    Article  Google Scholar 

  • Cassano CL, Simon AJ, Liu W, Fredrickson C, Fan ZH (2015) Use of vacuum bagging for fabricating thermoplastic microfluidic devices. Lab Chip 15(1):62–66

    Article  Google Scholar 

  • Chen J, Zhou Y, Wang D, He F, Rotello VM, Carter KR, Watkins JJ, Nugen SR (2015) UV-nanoimprint lithography as a tool to develop flexible microfluidic devices for electrochemical detection. Lab Chip 15(14):3086–3094

    Article  Google Scholar 

  • Chin CD, Linder V, Sia SK (2012) Commercialization of microfluidic point-of-care diagnostic devices. Lab Chip 12(12):2118–2134

    Article  Google Scholar 

  • Chow WWY, Lei KF, Shi G, Li WJ, Huang Q (2005) Microfluidic channel fabrication by PDMS-interface bonding. Smart Mater Struct 15(1):S112

    Article  Google Scholar 

  • Eddings MA, Johnson MA, Gale BK (2008) Determining the optimal PDMS–PDMS bonding technique for microfluidic devices. J Micromech Microeng 18(5):067001

    Article  Google Scholar 

  • Focke M, Kosse D, Müller C, Reinecke H, Zengerle R, von Stetten F (2010) Lab-on-a-foil: microfluidics on thin and flexible films. Lab Chip 10(11):1365–1386

    Article  Google Scholar 

  • Folch, A. 2016. Introduction to bioMEMS. CRC Press

  • Gao H, Tan H, Zhang W, Morton K, Chou SY (2006) Air cushion press for excellent uniformity, high yield, and fast nanoimprint across a 100 mm field. Nano Lett 6(11):2438–2441

    Article  Google Scholar 

  • Gordon TL, Fakley ME (2003) The influence of elastic modulus on adhesion to thermoplastics and thermoset materials. Int J Adhes Adhes 23(2):95–100

    Article  Google Scholar 

  • Guber AE, Heckele M, Herrmann D, Muslija A, Saile V, Eichhorn L, Gietzelt T, Hoffmann W, Hauser PC, Tanyanyiwa J, Gerlach A (2004) Microfluidic lab-on-a-chip systems based on polymers—fabrication and application. Chem Eng J 101(1–3):447–453

    Article  Google Scholar 

  • Guo LJ (2007) Nanoimprint lithography: methods and material requirements. Adv Mater 19(4):495–513

    Article  Google Scholar 

  • Huang FC, Chen YF, Lee GB (2007) CE chips fabricated by injection molding and polyethylene/thermoplastic elastomer film packaging methods. Electrophoresis 28(7):1130–1137

    Article  Google Scholar 

  • Kelly RT, Woolley AT (2003) Thermal bonding of polymeric capillary electrophoresis microdevices in water. Anal Chem 75(8):1941–1945

    Article  Google Scholar 

  • Khan I, Poh BT (2011) Natural rubber-based pressure-sensitive adhesives: a review. J Polym Environ 19(3):793

    Article  Google Scholar 

  • Kim H, Mizumachi H (1995) Miscibility and peel strength of acrylic pressure-sensitive adhesives: acrylic copolymer–tackifier resin systems. J Appl Polym Sci 56(2):201–209

    Article  Google Scholar 

  • Mahmoodi SR, Besser RS (2018) Fabrication and characterization of a thin, double-sided air breathing micro fuel cell. Fuel Cells 18(4):499–508

    Article  Google Scholar 

  • Marasso SL, Mombello D, Cocuzza M, Casalena D, Ferrante I, Nesca A, Poiklik P, Rekker K, Aaspollu A, Ferrero S, Pirri CF (2014) A polymer lab-on-a-chip for genetic analysis using the arrayed primer extension on microarray chips. Biomed Microdevice 16(5):661–670

    Article  Google Scholar 

  • Matellan C, Armando E (2018) Cost-effective rapid prototyping and assembly of poly (methyl methacrylate) microfluidic devices. Sci Rep 8(1):6971

    Article  Google Scholar 

  • McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35(7):491–499

    Article  Google Scholar 

  • Miserere S, Mottet G, Taniga V, Descroix S, Viovy JL, Malaquin L (2012) Fabrication of thermoplastics chips through lamination based techniques. Lab Chip 12(10):1849–1856

    Article  Google Scholar 

  • Nagarajan P, Yao D (2011) Uniform shell patterning using rubber-assisted hot embossing process. I. Experimental. Polym Eng Sci 51(3):592–600

    Article  Google Scholar 

  • Narasimhan J, Papautsky I (2003) Polymer embossing tools for rapid prototyping of plastic microfluidic devices. J Micromech Microeng 14(1):96

    Article  Google Scholar 

  • Nayak NC, Yue CY, Lam YC, Tan YL (2010) Thermal bonding of PMMA: effect of polymer molecular weight. Microsyst Technol 16(3):487

    Article  Google Scholar 

  • Nising P, Zeilmann T, Meyer T (2003) On the degradation and stabilization of poly (methyl methacrylate) in a continuous process. Chem Eng Technol 26(5):599–604

    Article  Google Scholar 

  • Ogilvie IRG, Sieben VJ, Floquet CFA, Zmijan R, Mowlem MC, Morgan H (2010) Reduction of surface roughness for optical quality microfluidic devices in PMMA and COC. J Micromech Microeng 20(6):065016

    Article  Google Scholar 

  • Park T, Song IH, Park DS, You BH, Murphy MC (2012) Thermoplastic fusion bonding using a pressure-assisted boiling point control system. Lab Chip 12(16):2799–2802

    Article  Google Scholar 

  • Pemg BY, Wu CW, Shen YK, Lin Y (2010) Microfluidic chip fabrication using hot embossing and thermal bonding of COP. Polym Adv Technol 21(7):457–466

    Article  Google Scholar 

  • Peng Linfa, Deng Yujun, Yi Peiyun, Lai Xinmin (2014) Micro hot embossing of thermoplastic polymers: a review. J Micromech Microeng 24(1):013001

    Article  Google Scholar 

  • Sackmann EK, Fulton AL, Beebe DJ (2014) The present and future role of microfluidics in biomedical research. Nature 507(7491):181

    Article  Google Scholar 

  • Søndergaard R, Hösel M, Angmo D, Larsen-Olsen TT, Krebs FC (2012) Roll-to-roll fabrication of polymer solar cells. Mater Today 15(1–2):36–49

    Article  Google Scholar 

  • Su YC, Shah J, Lin L (2003) Implementation and analysis of polymeric microstructure replication by micro injection molding. J Micromech Microeng 14(3):415

    Article  Google Scholar 

  • Sun Y, Kwok YC, Nguyen NT (2006) Low-pressure, high-temperature thermal bonding of polymeric microfluidic devices and their applications for electrophoretic separation. J Micromech Microeng 16(8):1681

    Article  Google Scholar 

  • Tan H, Kong L, Li M, Steere C, Koecher L (2004) Current status of nanonex nanoimprint solutions. Int Soc Opt Photon 5374:213–222

    Google Scholar 

  • Truckenmüller R, Giselbrecht S, Rivron N, Gottwald E, Saile V, Van den Berg A, Wessling M, Van Blitterswijk C (2011) Thermoforming of film-based biomedical microdevices. Adv Mater 23(11):1311–1329

    Article  Google Scholar 

  • Tsao CW, DeVoe DL (2009) Bonding of thermoplastic polymer microfluidics. Microfluid Nanofluid 6(1):1–16

    Article  Google Scholar 

  • Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7(4):499–505

    Article  Google Scholar 

  • Velten T, Ruf HH, Barrow D, Aspragathos N, Lazarou P, Jung E, Malek CK, Richter M, Kruckow J, Wackerle M (2005) Packaging of bio-MEMS: strategies, technologies, and applications. IEEE Trans Adv Packag 28(4):533–546

    Article  Google Scholar 

  • Wang X, Jin J, Li X, Li X, Ou Y, Tang Q, Fu S, Gao F (2011a) Low-pressure thermal bonding. Microelectron Eng 88(8):2427–2430

    Article  Google Scholar 

  • Wang ZY, Yue CY, Lam YC, Roy S, Jena RK (2011b) A modified quasi-creep model for assessment of deformation of topas COC substrates in the thermal bonding of microfluidic devices: experiments and modeling. J Appl Polym Sci 122(2):867–873

    Article  Google Scholar 

  • Wu S (1982) Polymer interface and adhesion. Marcel Dekker, New York

    Google Scholar 

  • Zhou W (2013) Nanoimprint lithography: an enabling process for nanofabrication. Springer, Berlin

    Book  Google Scholar 

  • Zhu X, Liu G, Guo Y, Tian Y (2007) Study of PMMA thermal bonding. Microsyst Technol 13(3–4):403–407

    Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the support of a fellowship provided by the Innovation and Entrepreneurship Program at Stevens Institute of Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. R. Mahmoodi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahmoodi, S.R., Sun, PK., Mayer, M. et al. Gas-assisted thermal bonding of thermoplastics for the fabrication of microfluidic devices. Microsyst Technol 25, 3923–3932 (2019). https://doi.org/10.1007/s00542-019-04380-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-019-04380-9

Navigation