Skip to main content
Log in

A ballon model analysis with Cu-blood medicated nanoparticles as drug agent through overlapped curved stenotic artery having compliant walls

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this speculative study, main focus is to examine the Cu-blood medicated application in a curved artery with overlapping stenosis. This analysis investigate the combined impact of variable and constant Cu-blood transportation with shape factor. The walls of the stenotic artery are considered to be compliant in nature. Flow of blood in a curved stenotic artery having balloon is analyzed mathematically by taking its behavior as viscous fluid. The mild stenosis approximation is used for the dimensionless terms of velocity, temperature and stress on wall of curved stenotic artery. The copper nanoparticles are used as drug agent. At the end, the comparison of curvature and non-curavture artery shows that the curved artery minimized the stress in the presence of copper as drug agent. Moreover, the use of platelets nanoparticles is more appropriate to reduce hemodynamics effects of curved catheterized artery in comparison to cylinders and bricked shape nanoparticles. Therefore, the use of Cu-blood as drug agent finds valuable application in bio-inspired field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Ahmed A, Nadeem S (2017) Shape effect of Cu-nanoparticles in unsteady flow through curved artery with catheterized stenosis. Results Phys 7:677–689

    Article  Google Scholar 

  • Akbar NS, Rahman SU, Ellahi R, Nadeem S (2014) Nano fluid flow in tapering stenosed arteries with permeable walls. Int J Therm Sci 85:54–61

    Article  Google Scholar 

  • Biswas D, Chakraborty US (2010) Pulsatile blood flow through a catheterized artery with an axially nonsymmetrical stenosis. Appl Math Sci 4:2865–2880

    MathSciNet  MATH  Google Scholar 

  • Buongiorono J (2006) Convective transport in nanofluids. ASME J Heat Transfer 128:240–250

    Article  Google Scholar 

  • Choi SUS, Eastman JA (1995) Enhancing thermal conductivity of fluids with nanoparticles. Fluids Eng Div 231:99–105

    Google Scholar 

  • Ellahi R, Rahman SU, Nadeem S, Akbar NS (2014) Blood flow of nanofluid through an artery with composite stenosis and permeable walls. Appl Nanosci 4:919–926

    Article  Google Scholar 

  • Elnaqeeb T, Mekheimer KhS, Alghamdi F (2016) Cu-blood flow model through a catheterized mild stenotic artery with a thrombosis. Math Biosci 282:135–146

    Article  MathSciNet  MATH  Google Scholar 

  • Godin B, Sakamoto JH, Serda RE, Grattoni A, Bouamrani A, Ferrari M (2010) Emerging applications of nanomedicine for the diagnosis and treatment of cardiovascular diseases. Trends Pharmacol Sci 31:199–205

    Article  Google Scholar 

  • Ismail Z, Abdullah I, Mustapha N, Amin N (2008) A power-law model of blood flow through a tapered overlapping stenosed artery. Appl Math Comput 195:669–680

    MathSciNet  MATH  Google Scholar 

  • Jiang Y, Reynolds C, Xiao C, Feng W, Zhou Z, Rodriguez W, Tyagi SC, Eaton JW, Saari JT, Kang YJ (2007) Dietary copper supplementation reverses hypertrophic car- diomyopathy induced by chronic pressure overload in mice. J Exp Med 204:657–666

    Article  Google Scholar 

  • Karahalios GT (1990) Some possible effects of a catheter on the arterial wall. Med Phys 17:922–925

    Article  Google Scholar 

  • Mekheimer KhS, El Kot MA (2012) Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. Appl Math Model 36:5393–5407

    Article  MathSciNet  MATH  Google Scholar 

  • Mekheimer KhS, Kot KhS (2012a) Mathematical modelling of axial flow between two eccentric cylinders: application on the injection of eccentric catheter through stenotic arteries. Int J Non-Linear Mech 47:927–937

    Article  Google Scholar 

  • Mekheimer KhS, Kot KhS (2012b) Mathematical modelling of unsteady flow of a Sisko fluid through an anisotropically tapered elastic arteries with time-variant overlapping stenosis. Appl Math Model 38:5393–5407

    Article  MathSciNet  MATH  Google Scholar 

  • Mekheimer KhS, Kot MAE (2015) Suspension model for blood flow through catheterized curved artery with time-variant overlapping stenosis. Eng Sci Technol 18:452–462

    Google Scholar 

  • Mekheimer KhS, Salama F, El MA (2015) Kot, The unsteady flow of a Carreau fluid through inclined catheterized arteries having a balloon with time-variant overlapping stenosis. Walailak J Sci Technol 12:863–883

    Google Scholar 

  • Mekheimer KhS, Elnaqeeb T, El Kot MA, Alghamdi F (2016) Simultaneous effect of magnetic field and metallic nanoparticles on a micropolar fluid through an verlapping stenotic artery: Blood flow model. Phys Essays 29:272–283

    Article  Google Scholar 

  • Misra JC, Shit GC (2006) Blood flow through arteries in a pathological state: a theoretical study. Int J Eng Sci 44:662–671

    Article  MATH  Google Scholar 

  • Murshed SMS, Castro CAN, Lourenco MJV, Lopes MLM, Santos FJV (2011) A review of boiling and convective heat transfer with nanofluids. Renew Sustain Energy Rev 15:2342–2354

    Article  Google Scholar 

  • Nadeem S, Maraj EN (2014) The mathematical analysis for peristaltic flow of nanofluid in a curved channel with compliant walls. Appl. Nanosci 4:85–92

    Article  Google Scholar 

  • Ponalagusamy R (2007) Blood flow through an artery with mild stenosis: a two-layered model, different shapes of stenoses and slip velocity at the wall. J Appl Sci 7:1071–1077

    Article  Google Scholar 

  • Sankar DS, Hemalatha K (2007) A non-Newtonian fluid flow model for blood flow through a catheterized artery-steady flow. Appl Math Model 31:1847–1864

    Article  MATH  Google Scholar 

  • Shahzadi I, Sadaf H, Nadeem S, Saleem A (2017) Bio-mathematical analysis for the peristaltic flow of single wall carbon nanotubes under the impact of variable viscosity and wall properties. Comput Methods Programs Bio Med 139:137–147

    Article  Google Scholar 

  • Verma NK, Mishrab S, Siddiqui SU, Gupta RS (2011) Study of blood flow through a catheterized artery. Adv Appl Sci Res 2:114–122

    Google Scholar 

  • Young DF (1979) Fluid mechanics of arterial stenoses. J Biomech Eng 101:157–175

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Iqra Shahzadi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

$$ t0 = q/64 $$
$$ \begin{aligned} t1 & = 1/(64({ \ln }h - { \ln }R)2)(q{ \ln }h2(3R4 - 4R2s0 - 4h2s0{ \ln }R) + h2{ \ln }R(16 - { \ln }R( - 16 + q(h2 - 4R2 + 4s0) \\ & \quad + 4qs0{ \ln }R)) + { \ln }h( - 16R2 + { \ln }R(h4q - 3qR4 - 4h2(4 + q(R2 - s0)) + 4qR2s0 + 8h2qs0{ \ln }R))) \\ \end{aligned}, $$
$$ \begin{aligned} t2 & = (16( - h2 + R2) + ( - h4q + 4h2(4 + q(R2 - s0)) + q( - 3R4 + 4R2s0) \\ & \quad + 4h2qs0({ \ln }h - { \ln }R))({ \ln }h - { \ln }R))/(64({ \ln }h - { \ln }R)2) \\ \end{aligned}, $$
$$ t3 = (4(1 + { \ln }R) + q({ \ln }h - { \ln }R)( - R2 + s0 + s0{ \ln }R))/(16({ \ln }h - { \ln }R)), $$
$$ t4 = - ((qs0)/16) + 1/(4( - { \ln }h + { \ln }R)), $$
$$ t5 = ((h - R)(36 + q(2(h2 + hR + R2) - 9s0)( - { \ln }h + { \ln }R)))/(36({ \ln }h - { \ln }R)2), $$
$$ t6 = q/18, $$
$$ t7 = - ((qs0)/4) + 1/( - { \ln }h + { \ln }R), $$
$$ \begin{aligned} t8 & = (2qR( - 2R2 + 9s0){ \ln }h + h{ \ln }R( - 36 + q( - 2h2 + 9s0){ \ln }R) + { \ln }h(36R + q(2(h3 + R3) \\ & \quad - 9(h + R)s0){ \ln }R))/(36({ \ln }h - { \ln }R)2) \\ \end{aligned}, $$
$$ s0 = ((h2 - R2)/({ \ln }h - { \ln }R)), $$
$$ s1 = ( - 216h2{ \ln }h + 216R2{ \ln }h + 216h2{ \ln }R - 216R2{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)), $$
$$ s2 = ( - 72h4R2{ \ln }h + 72h2R4{ \ln }h + 72h4R2{ \ln }R - 72h2R4{ \ln }R)/(1152(h2 - R2)({ \ln }h{ \ln }R)), $$
$$ s3 = (144h4 - 288h2R2 + 144R4)/(1152(h2 - R2)({ \ln }h - { \ln }R)), $$
$$ s4 = (72h4{ \ln }h + 144h2R2{ \ln }h - 216R4{ \ln }h - 216h4{ \ln }R + 144h2R2{ \ln }R + 72R4{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)),$$
$$ s5 = ( - 576h2t2{ \ln }h + 576R2t2{ \ln }h + 576h2t2{ \ln }R - 576R2t2{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)), $$
$$ \begin{aligned} s6 & = ( - 108h4 - 27h6q + 27h4qR2 + 108R4 + 27h2qR4 - 27qR6 + 144h4{ \ln }h + 24h6q{ \ln }h \\ & \quad - 24qR6{ \ln }h + 960h6t0{ \ln }h - 960R6t0{ \ln }h + 864h4t3{ \ln }h - 864R4t3{ \ln }h \\ & \quad + 72h4t4{ \ln }h - 72R4t4{ \ln }h - 512h3t5{ \ln }h + 512R3t5{ \ln }h + 48h6t6{ \ln }h - 48R6t6{ \ln }h \\ & \quad + 144h4t7{ \ln }h - 144R4t7{ \ln }h + 384h3t8{ \ln }h - 384R3t8{ \ln }h + 576h2t2{ \ln }h \\ & \quad + 864h4t4{ \ln }h2 + 384h3t5{ \ln }h2 - 144h4{ \ln }R - 24h6q{ \ln }R + 24qR6{ \ln }R \\ & \quad - 960h6t0{ \ln }R + 960R6t0{ \ln }R - 864h4t3{ \ln }R + 864R4t3{ \ln }R - 72h4t4{ \ln }R \\ & \quad + 72R4t4{ \ln }R + 512h3t5{ \ln }R - 512R3t5{ \ln }R - 48h6t6{ \ln }R + 48R6t6{ \ln }R \\ & \quad - 144h4t7{ \ln }R + 144R4t7{ \ln }R - 384h3t8{ \ln }R + 384R3t8{ \ln }R - 576h2t2{ \ln }h{ \ln }R \\ & \quad - 576R2t2{ \ln }h{ \ln }R - 864h4t4{ \ln }h{ \ln }R - 864R4t4{ \ln }h{ \ln }R - 384h3t5{ \ln }h{ \ln }R \\ & \quad - 384R3t5{ \ln }h{ \ln }R + 576R2t2{ \ln }R + 864R4t4{ \ln }R \\ & \quad + 384R3t5{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)) \\ \end{aligned}, $$
$$ s7 = ( - 384h2t5{ \ln }h + 384R2t5{ \ln }h + 384h2t5{ \ln }R - 384R2t5{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)), $$
$$ \begin{aligned} s8 & = (512h2t5{ \ln }h - 512R2t5{ \ln }h - 384h2t8{ \ln }h + 384R2t8{ \ln }h - 512h2t5{ \ln }R \\ & \quad + 512R2t5{ \ln }R + 384h2t8{ \ln }R - 384R2t8{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)) \\ \end{aligned}, $$
$$ \begin{aligned} s9 & = ( - 144h2 - 36h4q + 144R2 + 72h2qR2 - 36qR4 - 864h2t4{ \ln }h + 864R2t4{ \ln }h + 864h2t4{ \ln }R \\ & \quad - 864R2t4{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)); \\ \end{aligned}, $$
$$ \begin{aligned} s10 & = (108h2 + 27h4q - 108R2 - 54h2qR2 + 27qR4 - 36h2qR2{ \ln }h + 36qR4{ \ln }h \\ & \quad - 864h2t3{ \ln }h + 864R2t3{ \ln }h - 72h2t4{ \ln }h + 72R2t4{ \ln }h - 144h2t7{ \ln }h + 144R2t7{ \ln }h + 144h2{ \ln }R \\ & \quad + 36h4q{ \ln }R - 144R2{ \ln }R - 36h2qR2{ \ln }R + 864h2t3{ \ln }R - 864R2t3{ \ln }R \\ & \quad + 72h2t4{ \ln }R - 72R2t4{ \ln }R + 144h2t7{ \ln }R - 144R2t7{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)); \\ \end{aligned}, $$
$$ \begin{aligned} s11 & = (12h2q{ \ln }h - 12qR2{ \ln }h - 960h2t0{ \ln }h + 960R2t0{ \ln }h - 48h2t6{ \ln }h + 48R2t6{ \ln }h \\ & \quad - 12h2q{ \ln }R + 12qR2{ \ln }R + 960h2t0{ \ln }R - 960R2t0{ \ln }R + 48h2t6{ \ln }R \\ & \quad - 48R2t6{ \ln }R)/(1152(h2 - R2)({ \ln }h - { \ln }R)) \\ \end{aligned}, $$
$$ \begin{aligned} s12 & = (108h4R2 + 27h6qR2 - 108h2R4 - 54h4qR4 + 27h2qR6 - 144h4R2{ \ln }h \\ & \quad - 24h6qR2{ \ln }h + 24h2qR6{ \ln }h - 960h6R2t0{ \ln }h + 960h2{\text{R}}6t0{ \ln }h \\ & \quad - 864h4R2t3{ \ln }h + 864h2R4t3{ \ln }h - 72h4R2t4{ \ln }h + 72h2R4t4{ \ln }h \\ & \quad + 512h3R2t5{ \ln }h - 512h2R3t5{ \ln }h - 48h6R2t6{ \ln }h + 48h2R6t6{ \ln }h \\ & \quad - 144h4R2t7{ \ln }h + 144h2R4t7{ \ln }h - 384h3R2t8{ \ln }h + 384h2R3t8{ \ln }h \\ & \quad - 576h2R2t2{ \ln }h - 864h4R2t4{ \ln }h - 384h3R2t5{ \ln }h + 144h4R2{ \ln }R \\ & \quad + 24h6qR2{ \ln }R - 24h2qR6{ \ln }R + 960h6R2t0{ \ln }R - 960h2R6t0{ \ln }R \\ & \quad + 864h4R2t3{ \ln }R - 864h2R4t3{ \ln }R + 72h4R2t4{ \ln }R - 72h2R4t4{ \ln }R \\ & \quad - 512h3R2t5{ \ln }R + 512h2R3t5{ \ln }R + 48h6R2t6{ \ln }R - 48h2R6t6{ \ln }R \\ & \quad + 144h4R2t7{ \ln }R - 144h2R4t7{ \ln }R + 384h3R2t8{ \ln }R - 384h2R3t8{ \ln }R \\ & \quad + 1152h2R2t2{ \ln }h{ \ln }R + 864h4R2t4{ \ln }h{ \ln }R + 864h2R4t4{ \ln }h{ \ln }R + 384h3R2t5{ \ln }h{ \ln }R \\ & \quad + 384h2R3t5{ \ln }h{ \ln }R - 576h2R2t2{ \ln } - 864h2R4t4{ \ln }R2 - 384h2R3t5{ \ln }R2)/(1152(h2 - R2)({ \ln }h - { \ln }R)) \\ \end{aligned}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayub, M., Shahzadi, I. & Nadeem, S. A ballon model analysis with Cu-blood medicated nanoparticles as drug agent through overlapped curved stenotic artery having compliant walls. Microsyst Technol 25, 2949–2962 (2019). https://doi.org/10.1007/s00542-018-4263-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4263-x

Navigation