Skip to main content

Advertisement

Log in

Shoepad nanogenerator based on electrospun PVDF nanofibers

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The emerging wearable electronic devices requires power source available as anytime as possible, and the piezoelectric polymer based nanogenerators attract research interests as a candidate. Herein, we demonstrate a shoepad nanogenerator based on electrospun PVDF nanofibers harvesting energy during walking or running. We first compared three popular processes of electrospinning and find a best one which can produce maximum β-phase content in PVDF nanofibers. Another comparative experiment shows for nanofabric mats the sandwiched electrodes are better for outputting more energy than parallel electrodes. Finally a nanogenerator is designed and fabricated utilizing the far field electrospun PVDF nanofabric mat with the sandwiched electrodes. It has the optimal output power of about 6.45 μW with load resistance of 5.5 MΩ.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Bisht GS et al (2011) Controlled continuous patterning of polymeric nanofibers on three-dimensional substrates using low-voltage near-field electrospinning. Nano Lett 11(4):1831–1837

    Article  MathSciNet  Google Scholar 

  • Cai X, Lei T, Sun D, Lin L (2017) A critical analysis of the α, β and γ phases in poly (vinylidene fluoride) using FTIR. RSC Adv 7(25):15382–15389

    Article  Google Scholar 

  • Chang C, Limkrailassiri K, Lin L (2008) Continuous near-field electrospinning for large area deposition of orderly nanofiber patterns. Appl Phys Lett 93(12):123111

    Article  Google Scholar 

  • Chang C, Tran VH, Wang J, Fuh Y-K, Lin L (2010) Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. Nano Lett 10(2):726–731

    Article  Google Scholar 

  • Fang J, Wang X, Lin T (2011) Electrical power generator from randomly oriented electrospun poly (vinylidene fluoride) nanofibre membranes. J Mater Chem 21(30):11088–11091

    Article  Google Scholar 

  • Fang J, Niu H, Wang H, Wang X, Lin T (2013) Enhanced mechanical energy harvesting using needleless electrospun poly (vinylidene fluoride) nanofibre webs. Energy Environ Sci 6(7):2196–2202

    Article  Google Scholar 

  • Huang Y et al (2017) Hyper-stretchable self-powered sensors based on electrohydrodynamically printed, self-similar piezoelectric nano/microfibers. Nano Energy 40:432–439

    Article  Google Scholar 

  • Katta P, Alessandro M, Ramsier RD, Chase GG (2004) Continuous electrospinning of aligned polymer nanofibers onto a wire drum collector. Nano Lett 4(11):2215–2218

    Article  Google Scholar 

  • Kiselev P, Rosellllompart J (2012) Highly aligned electrospun nanofibers by elimination of the whipping motion. J Appl Polym Sci 125(3):2433–2441

    Article  Google Scholar 

  • Lei T et al (2013) Spectroscopic evidence for a high fraction of ferroelectric phase induced in electrospun polyvinylidene fluoride fibers. RSC Adv 3(47):24952–24958

    Article  Google Scholar 

  • Lei T, Yu L, Zheng G, Wang L, Wu D, Sun D (2015) Electrospinning-induced preferred dipole orientation in PVDF fibers. J Mater Sci 50(12):4342–4347

    Article  Google Scholar 

  • Li D, Xia Y (2004) Electrospinning of nanofibers: reinventing the wheel? Adv Mater 16(14):1151–1170

    Article  Google Scholar 

  • Mohammadi B, Yousefi AA, Bellah SM (2007) Effect of tensile strain rate and elongation on crystalline structure and piezoelectric properties of PVDF thin films. Polym Testing 26(1):42–50

    Article  Google Scholar 

  • Park K-I, Jeong CK, Kim NK, Lee KJ (2016) Stretchable piezoelectric nanocomposite generator. Nano Converg 3(1):12

    Article  Google Scholar 

  • Sencadas V, Gregorio R Jr, Lanceros-Méndez S (2009) α to β phase transformation and microestructural changes of PVDF films induced by uniaxial stretch. J Macromol Sci 48(3):514–525

    Article  Google Scholar 

  • Sirohi J, Chopra I (2000) Fundamental understanding of piezoelectric strain sensors. J Intell Mater Syst Struct 11(4):246–257

    Article  Google Scholar 

  • Sun D, Chang C, Li S, Lin L (2006) Near-field electrospinning. Nano Lett 6(4):839–842

    Article  Google Scholar 

  • Sun C, Shi J, Bayerl DJ, Wang X (2011) PVDF microbelts for harvesting energy from respiration. Energy Environ Sci 4(11):4508–4512

    Article  Google Scholar 

  • Tamang A et al (2015) DNA-assisted β-phase nucleation and alignment of molecular dipoles in PVDF film: a realization of self-poled bioinspired flexible polymer nanogenerator for portable electronic devices. ACS Appl Mater Interfaces 7(30):16143–16147

    Article  Google Scholar 

  • Wang ZL (2017) On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater Today 20(2):74–82

    Article  Google Scholar 

  • Wang L, Ma S, Wu D (2016) Electrospinning of aligned PVDF nanofibers with piezoelectricity and its application in pressure sensors. Opt Precis Eng 24(10):2498–2504

    Article  Google Scholar 

  • Ye D, Ding Y, Duan Y, Su J, Yin Z, Huang YA (2018) Large-scale direct-writing of aligned nanofibers for flexible electronics. Small 14(21):1703521

    Article  Google Scholar 

  • Yee WA et al (2008) Stress-induced structural changes in electrospun polyvinylidene difluoride nanofibers collected using a modified rotating disk. Polymer 49(19):4196–4203

    Article  Google Scholar 

  • Zi Y et al (2015) Triboelectric–pyroelectric–piezoelectric hybrid cell for high-efficiency energy-harvesting and self-powered sensing. Adv Mater 27(14):2340–2347

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (U1505243, 51475398) and the Shenzhen Science and Technology Plan Project (JCYJ20170818141912229).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoheng Sun.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, L., Zhou, P., Wu, D. et al. Shoepad nanogenerator based on electrospun PVDF nanofibers. Microsyst Technol 25, 3151–3156 (2019). https://doi.org/10.1007/s00542-018-4217-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4217-3

Navigation