Skip to main content
Log in

Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining

Microsystem Technologies Aims and scope Submit manuscript

Cite this article

Abstract

In this paper, design and simulation of a single-axial, capacitive, fully differential MEMS accelerometer based on surface micromachining with two proof masses is presented. So far, most surface micromachined capacitive accelerometers offered, employed differential interface circuits to measure capacitor variations. However, in the presented structure, the possibility of fully differential design is realized by dividing the proof mass to two electrically isolated parts that are located on a silicon nitride layer. By utilizing two proof masses and altering outputs and stimulation voltage, parasitic capacitor is reduced and the sensitivity is increased. Moreover, some sensor capacitors are embedded inside the proof mass, so that sensitivity could be increased in the limited area and electrode length could be reduced. Furthermore, analytic equations are derived to calculate the sensitivity, as well to optimize the sensor structure. The designed sensor has been simulated and optimized using COMSOL Multiphysics, where the simulation results show the mechanical and capacitive sensitivity of 29.8 nm/g and 15.8 fF/g, respectively. The sensor size is 1 mm × 1 mm that leads to excellent performance, regarding to the defined figure of merit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Javad Yavand Hasani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Keshavarzi, M., Yavand Hasani, J. Design and optimization of fully differential capacitive MEMS accelerometer based on surface micromachining. Microsyst Technol 25, 1369–1377 (2019). https://doi.org/10.1007/s00542-018-4187-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-4187-5

Navigation