Variation resilient low-power memristor-based synchronous flip-flops: design and analysis

  • Soumitra Pal
  • Vivek Gupta
  • Aminul Islam
Technical Paper


Flip-flops are the basic digital components for all types of complex digital electronics systems and sequential logic circuits. In this paper, new nonvolatile, low power, robust, compact and fully integrable SR and D flip-flops using a mathematical model of the memristor and CMOS are proposed. The memristor model captures all the well-established features of the memristor devices. A thorough investigation of the electrical response of memristor has been done and based on that the most suitable mechanisms for read and write operations have been recommended and their advantages are also listed. To propose a low power and reliable flip-flop, the nonvolatile nature of memristor is utilized. The tradeoffs between the design parameters such as read and write access times, energy dissipation and robustness have been analyzed. CMOS based transmission gates have been used to provide access for the inputs to the internal memristors of the architecture during write operations. The simulation is performed utilizing a 45-nm CMOS model.



  1. Biolek D, Pershin YV, Di Ventra M (2013) Reliable SPICE simulations of memristors, memcapacitors and meminductors. Radioengineering 22(4):945Google Scholar
  2. Borghetti J et al (2010) ‘Memristive’ switches enable ‘stateful’ logic operations via material implication. Nature 464(7290):873–876CrossRefGoogle Scholar
  3. Budhathoki RK, Sah MP, Adhikari SP, Kim H, Chua L (2013) Composite behavior of multiple memristor circuits. IEEE Trans Circuits Syst I Reg Pap 60(10):2688–2700MathSciNetCrossRefzbMATHGoogle Scholar
  4. Buscarino A, Fortuna L, Frasca M, Gambuzza LV (2012) A chaotic circuit based on hewlett-packard memristor. Chaos 22(2):023136MathSciNetCrossRefzbMATHGoogle Scholar
  5. Chua L (1971) Memristor—the missing circuit element. IEEE Trans Circuit Theory 18(5):507–519CrossRefGoogle Scholar
  6. Chua LO, Kang SM (1976) Memristive devices and systems. Proc IEEE 64:209–223MathSciNetCrossRefGoogle Scholar
  7. Ebong IE, Mazumder P (2011) Self-controlled writing and erasing in a memristor crossbar memory. IEEE Trans Nanotechnol 10(6):1454–1463CrossRefGoogle Scholar
  8. Ebong IE, Mazumder P (2012) CMOS and memristor-based neural network design for position detection. Proc IEEE 100(6):2050–2060CrossRefGoogle Scholar
  9. Fouda ME, Khatib MA, Mosad AG, Radwan AG (2013) Generalized analysis of symmetric and asymmetric memristive two-gate relaxation oscillators. IEEE Trans Circuits Syst I Reg Pap 60(10):2701–2708MathSciNetCrossRefGoogle Scholar
  10. Gao L, Alibart F, Strukov DB (2013) Programmable CMOS/memristor threshold logic. IEEE Trans Nanotechnol 12(2):115–119CrossRefGoogle Scholar
  11. Ho Y, Huang GM, Li P (2011) Dynamical properties and design analysis for nonvolatile memristor memories. IEEE Trans Circuits Syst I Reg Pap 58(4):724–736MathSciNetCrossRefGoogle Scholar
  12. Junsangsri P, Lombardi F (2013) Design of a hybrid memory cell using memristance and ambipolarity. IEEE Trans Nanotechnol 12(1):71–80CrossRefGoogle Scholar
  13. Kim K, Shin S, Kang S (2011) Field programmable stateful logic array. IEEE Trans Comput Aided Des Integr Circuits Syst 30(12):1800–1813MathSciNetCrossRefGoogle Scholar
  14. Kvatinsky S, Wald N, Satat G, Kolodny A, Weiser UC, Friedman EG (2012) MRL-memristor ratioed logic. In: Proc. 13th Int. workshop cellular nanoscale netw. Appl. pp 1–6, Aug 2012Google Scholar
  15. Kvatinsky S, Friedman EG, Kolodny A, Weiser UC (2013) TEAM: Threshold adaptive memristor model. IEEE Trans Circ Syst I 60:211–221MathSciNetGoogle Scholar
  16. Kvatinsky S, Satat G, Wald N, Friedman EG, Kolodny A, Weiser UC (2014) Memristor-based material implication (IMPLY) logic: design principles and methodologies. IEEE Trans Very Large Scale Integr (VLSI) Syst 22(10):2054–2066CrossRefGoogle Scholar
  17. Lehtonen E, Poikonen JH, Laiho M (2012) Applications and limitations of memristive implication logic. In: Proc. 13th Int. Workshop Cellular Nanoscale Netw Appl, Aug. 2012, pp 1–6Google Scholar
  18. Medeiros-Ribeiro G, Nickel JH, Yang JJ (2011) Progress in CMOS memristor integration. In: Proc. IEEE/ACM Int. conf. comput.-aided design, pp 246–249Google Scholar
  19. Mohammad B, Homouz D, Elgabra H (2013) Robust hybrid memristor-CMOS memory: modeling and design. IEEE Trans Very Large Scale Integr Syst 21(11):2069–2079CrossRefGoogle Scholar
  20. Mukhopadhyay S, Mahmoodi H, Roy K (2005) Modeling of failure probability and statistical design of SRAM array for yield enhancement in nano-scaled CMOS, IEEE Trans. Comput Aided Des 24(12):18591879Google Scholar
  21. Pal S, Islam A (2015) Device bias technique to improve design metrics of 6T SRAM cell for subthreshold operation. In: 2015 2nd International conference on signal processing and integrated networks (SPIN), Noida, pp 865–870Google Scholar
  22. Pal S, Islam A (2016a) Variation tolerant differential 8T SRAM cell for ultralow power application. IEEE Trans Comput Aided Design Integr Circuits Syst 35(4):549–558CrossRefGoogle Scholar
  23. Pal S, Islam A (2016b) Low power and high variation tolerant 9T-SRAM cell at 16-nm technology node. Indian J Sci Tech 9(40):1–7CrossRefGoogle Scholar
  24. Pal S, Islam A (2016c) 9T SRAM Cell for reliable ultralow-power application and solving multi-bit soft-error issue. IEEE Trans Device Mater Reliab 16(2):172–182CrossRefGoogle Scholar
  25. Pandey MK, Ranu SK, Gupta P, Islam A (2015) 7-Transistor 2-memristor based non-volatile static random access memory cell design. In: IEEE Int. conf. green engineering and technologies, pp 1–4, Nov 2015Google Scholar
  26. Papoulis A (1991) Probability, random variables and stochastic process, 3rd edn. McGraw-Hill, New YorkzbMATHGoogle Scholar
  27. Pershin YV, Di Ventra M (2010a) Practical approach to programmable analog circuits with memristors. IEEE Trans Circuits Syst I Reg Pap 57(8):1857–1864MathSciNetCrossRefGoogle Scholar
  28. Pershin YV, Di Ventra M (2010b) Experimental demonstration of associative memory with memristive neural networks. Neural Netw 23(7):881–886CrossRefGoogle Scholar
  29. Pershin YV, La Fontaine S, Di Ventra M (2009) Memristive model of amoeba learning. Phys Rev E 80:021926CrossRefGoogle Scholar
  30. Pershin YV, Slipko VA, Di Ventra M (2013) Complex dynamics and scale invariance of one-dimensional memristive networks. Phys Rev E 87:022116CrossRefGoogle Scholar
  31. Pickett MD, Strukov DB, Borghetti JL, Yang JJ, Snider GS, Stewart DR, Williams RS (2009) Switching dynamics in titanium dioxide memristive devices. J App Phys 106(7):074508CrossRefGoogle Scholar
  32. Razavi B (2017) Design of analog CMOS integrated circuits, 2nd edn. McGraw-Hill Education, New YorkGoogle Scholar
  33. Rose GS, Manem H (2010) A hybrid CMOS-nano FPGA based on majority logic: from devices to architecture. CMOS Processors Memories. Springer, Dordrecht, pp 139–161Google Scholar
  34. Rose GS et al (2012) Leveraging memristive systems in the construction of digital logic circuits. Proc IEEE 100(6):2033–2049CrossRefGoogle Scholar
  35. Roy C, Islam A (2016) TG based 2T2M RRAM using memristor as memory element. Indian J Sci Technol 9(33):1–5CrossRefGoogle Scholar
  36. Shin S, Kim K, Kang S (2011a) Memristor applications for programmable analog ICs. IEEE Trans Nanotechnol 10(2):266–274CrossRefGoogle Scholar
  37. Shin S, Kim K, Kang S (2011b) Reconfigurable stateful NOR gate for large-scale logic-array integrations. IEEE Trans Circuits Syst II Exp Briefs 58(7):442–446CrossRefGoogle Scholar
  38. Shin S, Kim K, Kang S (2013) Resistive computing: memristors enabled signal multiplication. IEEE Trans Circuits Syst I Reg Pap 60(5):1241–1249MathSciNetCrossRefGoogle Scholar
  39. Strukov DB, Snider GS, Stewart DR, Williams RS (2008) The missing memristor found. Nature 453:80–83CrossRefGoogle Scholar
  40. Sun J, Shen Y, Yin Q, Xu C (2013) Compound synchronization of four memristor chaotic oscillator systems and secure communication. Chaos 23(1):013140MathSciNetCrossRefzbMATHGoogle Scholar
  41. Vourkas I, Sirakoulis GC (2014a) Memristor-based combinational circuits: a design methodology for encoders/decoders. Microelectr J 45(1):59–70CrossRefGoogle Scholar
  42. Vourkas I, Sirakoulis GC (2014b) On the generalization of composite memristive network structures for computational analog/digital circuits and systems. Microelectr J 45(11):1380–1391CrossRefGoogle Scholar
  43. Wang W, Jing TT, Butcher B (2010) FPGA based on integration of memristors and CMOS devices. In: Proc. IEEE Int. Symp. Circuits Syst. 2010, pp 1963–1966Google Scholar
  44. Wang LM et al (2015) Adaptive synchronization of memristor-based neural networks with time-varying delays. IEEE Trans Neural Netw Learn Syst 26(9):2033–2042MathSciNetCrossRefGoogle Scholar
  45. Yakopcic C, Taha TM, Subramanyam G, Pino RE, Rogers S (2011) A memristor device model. Electron Device Lett IEEE 32(10):1436–1438CrossRefGoogle Scholar
  46. Zhang Y, Wang X, Friedman EG (2017) Memristor-based circuit design for multilayer neural networks. In: IEEE Trans. Circuits and Systems I: Reg. Papers, vol. PP, no. 99, pp 1–10, Aug 2017Google Scholar
  47. Zheng J, Zeng Z, Zhu Y, Yang JJ (2017) Memristor-based nonvolatile synchronous flip-flop circuits. In: Int. conf. of informational science and technology, pp 504–508, Apr 2017Google Scholar
  48. Zhu X, Yang X, Wu C, Xiao N, Wu J, Yi X (2013) Performing stateful logic on memristor memory. IEEE Trans Circuits Syst II Exp Briefs 60(10):682–686CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electronic and Computer EngineeringHong Kong University of Science and TechnologyClear Water BayHong Kong
  2. 2.Department of Electronics and Communication EngineeringBirla Institute of TechnologyRanchiIndia

Personalised recommendations