Skip to main content
Log in

Design and modeling of mode-conversion in ring resonator and its application in all-optical switching

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The present paper describes the mode conversion of the optical signal using single waveguide coupled silicon micro-ring resonator (MRR). The mode conversion occurs between quasi-TM and the quasi-TE mode at the through port output with the application of the suitable optical pump power. The modeling of mode-conversion using ring resonator is performed through MATLAB as well as by finite-difference-time-domain (FDTD) simulation and further used to perform the all-optical switch. The refractive index contrast, height to width ratio of the waveguide and the choice of suitable wavelength and power for optical pumping and source are responsible for mode-conversion in the ring resonator. The application of mode-conversion to design all-optical switch in MRR is also included in the paper. Mode-conversion in terms of electric field intensity at a resonant wavelength of around 1.53 μm occurs and is utilized to design all-optical switch. The results obtained from both MATLAB and FDTD justify each other and validate the proposed concept. Some ‘Figure of merits’ and ‘Spectral parameters’ are calculated in the report to analyze the performance of the design.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Bharti GK, Rakshit JK (2018) Design of all-optical JK, SR and T flip-flops using micro-ring resonator-based optical switch. Photonics Netw Commun 35:381–391

    Article  Google Scholar 

  • Bhola B, Nosovitskiy P, Mahalingam H, Steier WH (2009) Sol-gel-based integrated optical microring resonator humidity sensor. IEEE Sens J 9:740–747

    Article  Google Scholar 

  • Bianucci P, Fietz CR, Robertson JW, Shvets G, Shih CK (2007) Polarization conversion in a silica microsphere. Opt Express 15:7000–7005

    Article  Google Scholar 

  • Chremmos I et al (eds) (2010) Photonic microresonator research and applications. Springer Series in Optical Sciences, vol 156, chap 2

  • Cusmai G, Morichetti F, Rosotti P, Costa R, Melloni A (2005) Circuit-oriented modeling of ring resonator. Opt Quant Electron 37:343–358

    Article  Google Scholar 

  • Dai D, Tang Y, Bowers J (2012) Mode conversion in tapered submicron silicon ridge optical waveguides. Opt Express 20:13425

    Article  Google Scholar 

  • Dai J et al (2015) All-optical logic operation of polarized light signals in highly nonlinear silicon hybrid plasmonic microring resonators. Appl Opt 54:4471–4477

    Article  Google Scholar 

  • Dumon P et al (2004) Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photonics Technol Lett 16:1328–1330

    Article  Google Scholar 

  • Ferrera M, Duchesne D, Razzari L, Peccianti M, Morandotti R, Cheben P, Moss DJ (2009) Low power four wave mixing in an integrated, micro-ring resonator with Q = 1.2 million. Opt Express 17:14098–14103

    Article  Google Scholar 

  • Fietz C, Shvets G (2007) Non-linear polarization conversion using microring resonators. Opt Lett 32:1683–1685

    Article  Google Scholar 

  • Heebner JE (2003) Nonlinear optical whispering gallery microresonators for photonics. The University of Rochester, Institute of Optics, Rochester

    Google Scholar 

  • Jinno M, Matsumoto T (1992) Nonlinear Sagnac interferometer switch and its applications. IEEE J Quantum Electron 28:875–882

    Article  Google Scholar 

  • Lamouroux B, Prade B, Orszag A (1982) Polarization effect in optical fiber ring resonators. Opt Lett 7:391–393

    Article  Google Scholar 

  • Li J, Li L, Jin L, Li C (2006) All-optical switch and limiter based on nonlinear polarization in Mach-Zehnder interferometer coupled with a polarization-maintaining fiber ring-resonator. Opt Commun 260:318–323

    Article  Google Scholar 

  • Lin Q, Painter OJ, Agrawal GP (2007) Non-linear optical phenomena in silicon waveguides: modeling and application. Opt Express 15:16604

    Article  Google Scholar 

  • Little BE, Chu ST (2000) Theory of polarization rotation and conversion in vertically coupled microresonators. IEEE Photonics Technol Lett 12:401

    Article  Google Scholar 

  • Liu GJ et al (2003) Nonlinear optical switching matrix. Opt Lett 28:1347–1349

    Article  Google Scholar 

  • Lui WW, Xu CL, Hirono T, Yokoyama K, Huang WP (1998a) Full-vectorial wave propagation in semiconductor optical bending waveguides and equivalent straight waveguide approximation. J Light Wave Technol 16:910

    Article  Google Scholar 

  • Lui WW, Hirano T, Yokoyama K, Huang WP (1998b) Polarization rotation in semiconductor in bending waveguides. J Light Wave Technol 16:929

    Article  Google Scholar 

  • Lumerical FDTD solutions [Online]-http://www.lumerical.com/tcad-products/fdtd/

  • Marcatili EAJ (1969) Bends in optical dielectric guides. Bell Syst Technol J 48:2103–2132

    Article  Google Scholar 

  • Melloni A, Martinelli M (2002) Synthesis of direct coupled resonators bandpass filters for WDM systems. J Lightwave Technol 20:296–303

    Article  Google Scholar 

  • Melloni A, Morichetti F, Martinelli M (2004) Polarization conversion in ring resonator phase shifters. Opt Lett 29:2785

    Article  Google Scholar 

  • Mookherjea S, Melloni A (2008) Microring resonators in integrated optics

  • Nayar BK et al (1991) All-optical switching in a 200-m twin-core fiber nonlinear Mach–Zehnder interferometer. Opt Lett 16:408–410

    Article  Google Scholar 

  • Pascher W, Pregla R (1993) Vectorial analysis of bends in optical strip waveguides by the method of lines. Radio Sci 28:1229–1233

    Article  Google Scholar 

  • Rabus DG (2007) Integrated ring resonators. Springer, ISBN: 978-3-540-68786-3, XVI

  • Rakshit JK, Roy JN (2014) Micro ring resonator based all optical reconfigurable logic operations. Opt Commun 321:38–46

    Article  Google Scholar 

  • Rakshit JK, Roy JN (2016a) All-optical ultrafast switching in a silicon microring resonator and its application to design multiplexer/demultiplexer, adder/subtractor and comparator circuit. Opt Appl 46:517–539

    Google Scholar 

  • Rakshit JK, Roy JN (2016b) Silicon micro-ring resonator based all-optical digital to analog converter. Photonic Netw Commun 34:84–92

    Article  Google Scholar 

  • Rakshit JK, Roy JN, Chattopadhyay T (2013a) Design of ring resonator-basedall-optical switch for logic and arithmetic operation-A theoretical study. Optik 124:6048–6057

    Article  Google Scholar 

  • Rakshit JK, Chottopadhyay T, Roy JN (2013b) Design of microring resonator based all-optical adder/subtractor. Theor Appl Phys 1:32–43

    Google Scholar 

  • Sanati P, Afroozeh A, Amiri I, Ali J, Chu LS (2014) Femtosecond pulse generation using microring resonators for eye nanosurgery. Nanosci Nanotechnol Lett 6:221–226

    Article  Google Scholar 

  • Sanders GA, Smith RB, Rouse GF (1989) Novel polarization-rotating fiber resonator for rotation sensing applications. Fiber Optic and Laser Sensors SPIE 1169

  • Shani Y et al (1991) Polarization rotation in asymmetric periodic loaded rib waveguides. Appl Phys Lett 59:1278–1280

    Article  Google Scholar 

  • Urquhart P (1988) Compound optical-fiber-based resonators. OSA A 5(6):803–812

    Google Scholar 

  • Van V, Absil PP, Hryniewicz JV, Ho PT (2001) Propagation loss in GaAs-AlGaAs microring resonators: measurements and model. J Lightwave Technol 19:1734–1739

    Article  Google Scholar 

  • Wang W, Xia J (2011) The characterizations of polarization in resonator integrated optic gyroscope. Opt Quant Electron 42:313–325

    Article  Google Scholar 

  • Wang Z, Lu Q, Wang Y, Xia J, Huang Q (2017) Electromagnetically induced transparency and absorption in a compact silicon ring-bus-ring-bus system. Opt Express 25:14368–14377

    Article  Google Scholar 

  • Xu HH, Huang QZ, Li YT (2010) Sub-nanosecond optical switch based on silicon racetrack resonator. Chin Phys B 19:084210

    Article  Google Scholar 

Download references

Acknowledgements

The authors of the paper want to thank Prof. Qingzhong Huang, Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, China for his valuable discussion and comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jayanta Kumar Rakshit.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bharti, G.K., Rakshit, J.K. & Pal, S.S. Design and modeling of mode-conversion in ring resonator and its application in all-optical switching. Microsyst Technol 25, 295–306 (2019). https://doi.org/10.1007/s00542-018-3964-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3964-5

Navigation