Skip to main content
Log in

The properties of free-standing epoxy polymer multi-mode optical waveguides

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The paper reports on the fabrication and characterisation of free-standing multimode optical epoxy polymer waveguides consisting of a core made of EpoCore and EpoClad polymer cladding and cover protection layers. The 50 × 50 μm2 rectangular waveguides are intended for short-reach optical interconnection and optimised for an operating wavelength of 850 nm. The waveguides of the proposed shapes were fabricated by a standard photolithography process on a silicon substrate provided with a Poly(vinyl alcohol) thin layer. The free-standing structure was then achieved by peeling the deposited EpoClad/EpoCore/EpoClad structures of that substrate. The optical scattering losses of the created planar waveguides, measured by the fibre probe technique at 632.8 and 964 nm, were 0.30 dB cm−1 at 632.8 nm and 0.17 dB cm−1 at 964 nm. Propagation optical loss measurements for rectangular waveguides were performed by the cut-back method and the best samples had optical losses below 0.55 dB cm−1 at 850 and 1310 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bamiedakis N, Chen J, Penty RV, White IH (2014) Bandwidth studies on multimode polymer waveguides for 25 Gb/s optical interconnects. IEEE Photon Technol Lett 26:2004–2007

    Article  Google Scholar 

  • Booth BL (1989) Low-loss channel waveguides in polymers. J Lightwave Technol 7:1445–1453

    Article  Google Scholar 

  • Bruck R, Muellner P, Kataeva N, Koeck A, Trassl S, Rinnerbauer V, Schmidegg K, Hainberger R (2013) Flexible thin-film polymer waveguides fabricated in an industrial roll-to-roll process. Appl Opt 52:4510–4514

    Article  Google Scholar 

  • Choi C, Lin L, Liu Y, Choi J, Wang L, Haas D, Magera J, Chen RT (2004) Flexible optical waveguide film fabrications and optoelectronic devices integration for fully embedded board-level optical interconnects. J Lightwave Technol 22:2168–2176

    Article  Google Scholar 

  • Eldada L (2004) Optical communication components. Rev Sci Inst 75:575–593

    Article  Google Scholar 

  • Elmogi A, Bosman E, Missinne J, van Steenberge G (2016) Comparison of epoxy- and siloxane-based single-mode optical waveguides defined by direct-write lithography. Opt Mater 52:26–31

    Article  Google Scholar 

  • Horvath R, Lindvold LR, Larsen NB (2003) Fabrication of all-polymer freestanding waveguides. J Micromech Microeng 13:419–424

    Article  Google Scholar 

  • Huang YY, Paloczi GT, Poon JKS, Yariv A (2004) Demonstration of flexible freestanding all-polymer integrated optical ring resonator devices. Adv Mater 16:44–48

    Article  Google Scholar 

  • Ibrahim MH, Lee SY, Chin MK, Kassim NM, Mohammad AB (2007) Single mode optical waveguides based on photodefinable benzocyclobutene (BCB 4024-40) polymer. Mic Opt Tech Lett 49:479–481

    Article  Google Scholar 

  • Khanarian G, Celanese H (2001) Optical properties of cyclic olefin copolymers. Opt Eng 40:1024–1029

    Article  Google Scholar 

  • Lee JH, Koh CY, Singer JP, Jeon SJ, Maldovan M, Stein O, Thomas EL (2014) 25th anniversary article: ordered polymer structures for the engineering of photons and phonons. Adv Mater 26:532–568

    Article  Google Scholar 

  • Li RZ, Zhang LJ, Hu W, Wang LD, Tang J, Zhang T (2016) Flexible TE-pass polymer waveguide polarizer with low bending loss. IEEE Photon Technol Lett 28:2601–2604

    Article  Google Scholar 

  • Ma H, Jen AKY, Dalton LR (2002) Polymer-based optical waveguides: materials, processing, and devices. Adv Mater 14:1339–1365

    Article  Google Scholar 

  • Metricon Corporation (2018). http://www.metricon.com. Accessed 18 May 2018

  • Micro resist technology GmbH: datasheet (2018). http://microchem.com/products/images/uploads/PI_EpoCoreClad.pdf

  • Nordt S, Pasch H, Radke W (2010) Method development for epoxy resin analysis. Microsyst Technol 16:1347–1351

    Article  Google Scholar 

  • Nourshargh N, Starr EM, Fox NI, Jones SG (1985) Simple technique for measuring attenuation of integrated optical waveguides. El Lett 21:818–820

    Article  Google Scholar 

  • Paloczi GT, Huang Y, Yariv A (2003) Free-standing all-polymer microring resonator optical filter. El Lett 39:1650–1651

    Article  Google Scholar 

  • Prajzler V, Klapuch J, Lyutakov O, Huttel I, Spirkova J, Nekvindova P, Jerabek V (2011) Design, fabrication and properties of rib poly(methylmethacrylimide) optical waveguides. Radioengineering 20:479–485

    Google Scholar 

  • Prajzler V, Nekvindova P, Hyps P, Lyutakov O, Jerabek V (2014) Flexible polymer planar optical waveguides. Radioengineering 23:776–782

    Google Scholar 

  • Prajzler V, Nekvindova P, Hyps P, Jerabek V (2015a) Properties of the optical planar polymer waveguides deposited on printed circuit boards. Radioengineering 24:442–448

    Article  Google Scholar 

  • Prajzler V, Nekvindova P, Hyps P, Jerabek V (2015b) Optical properties of polymer planar waveguides deposited on flexible foils. J Opt Adv Mater 17:1597–1602

    Google Scholar 

  • Prajzler V, Hyps P, Mastera R, Nekvindova P (2016) Properties of siloxane based optical waveguides deposited on transparent paper and foil. Radioengineering 25:230–235

    Article  Google Scholar 

  • Prajzler V, Nekvindova P, Spirkova J, Novotny M (2017a) The evaluation of the refractive indices of bulk and thick polydimethylsiloxane and polydimethyl-diphenylsiloxane elastomers by the prism coupling technique. J Mater Sci Mater Elect 28:7951–7961

    Article  Google Scholar 

  • Prajzler V, Neruda M, Nekvindova P, Mikulik P (2017b) Properties of multimode optical epoxy polymer waveguides deposited on silicon and TOPAS substrate. Radioengeneering 26:10–15

    Article  Google Scholar 

  • Prajzler V, Neruda M, Nekvindova P (2018) Flexible multimode polydimethyl-diphenylsiloxane optical planar waveguides. J Mater Sci Mater Elect 29:5878–5884

    Article  Google Scholar 

  • Rabiei P, Steier WH, Zhang C, Dalton LR (2002) Polymer micro-ring filters and modulators. J Lightwave Technol 20:1968–1975

    Article  Google Scholar 

  • Tekin T, Pleros N, Pitwon R, Hakansson A (2016) Optical interconnects for data centers, 1st edn. Woodhead, Sawston. ISBN 9780081005125

    Google Scholar 

  • Wong WH, Liu KK, Chan KS, Pun EYB (2006) Polymer devices for photonics applications. J Cryst Grow 288:100–104

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Epsilon Programme of the Technology Agency of the Czech Republic, Project no. TH01020276, and by the CTU Grant no. SGS17/188/OHK3/3T/13.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Václav Prajzler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prajzler, V., Neruda, M., Jašek, P. et al. The properties of free-standing epoxy polymer multi-mode optical waveguides. Microsyst Technol 25, 257–264 (2019). https://doi.org/10.1007/s00542-018-3960-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3960-9

Navigation