Advertisement

Enhanced sensitivity of cancer cell using one dimensional nano composite material coated photonic crystal

  • N. R. Ramanujam
  • I. S. Amiri
  • Sofyan A. Taya
  • Saeed Olyaee
  • R. Udaiyakumar
  • A. Pasumpon Pandian
  • K. S. Joseph Wilson
  • P. Mahalakshmi
  • P. P. Yupapin
Technical Paper
  • 38 Downloads

Abstract

We theoretically analyze the detection of a cancer cell in the one-dimensional photonic crystal by infiltrating different sample cells in the cavity layer. The defect modes appear in their transmission spectra only if the nanocomposite layers are included on either side of the cavity layer. This analysis is carried out by a dielectric constant and the transmittance peak of the cancer cell is compared with the normal cell. The transmittance peak shifts are analyzed with various filling factors for optimization purposes. Through the shifting spectrum, the sensitivity of cancer cell from the normal cell is obtained from a minimum of 42 nm/RIU to a maximum of 43 nm/RIU.

Notes

References

  1. Afroozeh A, Bahadoran M, Moradpour H, Zeinalinezhad A, Amiri IS (2016) Effect of voltage on the optical properties of liquid photonic crystal fiber. Bull Opt 1:3Google Scholar
  2. Ahmad H, Amiri I, Soltanian M, Narimani L, Zakaria R, Ismail M et al (2017a) High sensitivity surface plasmon resonance (SPR) refractive index sensor in 1.5 μm. Mater Exp 7:145–150CrossRefGoogle Scholar
  3. Ahmad H, Ghasemi M, Amiri I, Ariannejad M, Norizan SF, Latif AA et al (2017b) Gold cone metasurface MIC sensor with monolayer of graphene and multilayer of graphite. Plasmonics 12:497–508CrossRefGoogle Scholar
  4. Akbari E, Afroozeh A, Zeinalinezhad A, Amiri IS (2018) Analytical investigation for MoS2 field effect transistor-based gas sensor. J Nanoelectron Optoelectron 13:399–404CrossRefGoogle Scholar
  5. Amiri IS, Ariannejad M, Ali J, Yupapin P (2018) Design of optical splitter using ion-exchange method for DNA bio-sensor. J King Saud Univ Sci.  https://doi.org/10.1016/j.jksus.2018.03.012 Google Scholar
  6. Bagga K, Brougham D, Keyes TE, Brabazon D (2015) Magnetic and noble metal nanocomposites for separation and optical detection of biological species. Phys Chem Chem Phys 17:27968–27980CrossRefGoogle Scholar
  7. El-Amassi DM, Taya SA (2017) Reflection through a parallel-plate waveguide formed by two graphene sheets. Photon Nanostruct Fundam Appl 24:53–57CrossRefGoogle Scholar
  8. Kullab HM, Taya SA (2013) Peak type metal-clad waveguide sensor using negative index materials. AEU-Int J Electron Commun 67:984–986CrossRefGoogle Scholar
  9. Kullab HM, Taya SA (2014) Transverse magnetic peak type metal-clad optical waveguide sensor. Opt Int J Light Electron Opt 125:97–100CrossRefGoogle Scholar
  10. Kullab HM, Taya SA, El-Agez TM (2012) Metal-clad waveguide sensor using a left-handed material as a core layer. JOSA B 29:959–964CrossRefGoogle Scholar
  11. Lee M, Fauchet PM (2007) Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt Express 15:4530–4535CrossRefGoogle Scholar
  12. Liang X, Liu A, Zhang X, Yap P, Ayi T, and Yoon H (2005) Determination of refractive index for single living cell using integrated biochip. In: Solid-state sensors, actuators and microsystems, 2005. Digest of Technical Papers. TRANSDUCERS’05. The 13th International Conference on, 2005, pp 1712–1715Google Scholar
  13. Liu JT, Zhou YS, Wang FH, Gu BY (2004) Theory of ultra-narrow bandwidth optical filter consisting of anomalous dispersion photonic crystalGoogle Scholar
  14. Mishra Y, Mohapatra S, Avasthi D, Kabiraj D, Lalla N, Pivin J et al (2007) Gold–silica nanocomposites for the detection of human ovarian cancer cells: a preliminary study. Nanotechnology 18:345606CrossRefGoogle Scholar
  15. Pandey N, Tiwari K, Roy A (2012) ZnO–TiO2 nanocomposite: characterization and moisture sensing studies. Bull Mater Sci 35:347–352CrossRefGoogle Scholar
  16. Park SJ, Kwon OS, Lee JE, Jang J, Yoon H (2014) Conducting polymer-based nanohybrid transducers: a potential route to high sensitivity and selectivity sensors. Sensors 14:3604–3630CrossRefGoogle Scholar
  17. Preedy VR, Patel V (2012) Biosensors and cancer. CRC Press, Boca RatonGoogle Scholar
  18. Ramanujam N, Wilson KJ (2016) Optical properties of silver nanocomposites and photonic band gap–Pressure dependence. Opti Commun 368:174–179CrossRefGoogle Scholar
  19. Rao W, Song Y, Liu M, Jin C (2010) All-optical switch based on photonic crystal microcavity with multi-resonant modes. Opt Int J Light Electron Opt 121:1934–1936CrossRefGoogle Scholar
  20. Safaei R, Amiri I, Rezayi M, Ahmad H (2017) A stable dual-wavelength Q-switch using a compact passive device containing photonics crystal fiber embedded with carbon platinum. Laser Phys 28:016201CrossRefGoogle Scholar
  21. Shim YB (2013) Gold nanoparticles and nanocomposites in clinical diagnostics using electrochemical methods. J Nanopart 2013:535901Google Scholar
  22. Skivesen N, Têtu A, Kristensen M, Kjems J, Frandsen LH, Borel PI (2007) Photonic-crystal waveguide biosensor. Opt Express 15:3169–3176CrossRefGoogle Scholar
  23. Soltanian MRK, Amiri IS, Alavi SE, Ahmad H (2015a) Dual-wavelength erbium-doped fiber laser to generate terahertz radiation using photonic crystal fiber. J Lightwave Technol 33:5038–5046CrossRefGoogle Scholar
  24. Soltanian M, Ahmad H, Khodaie A, Amiri I, Ismail M, Harun S (2015b) A stable dual-wavelength Thulium-doped fiber laser at 1.9 μm using photonic crystal fiber. Sci Rep 5:14537CrossRefGoogle Scholar
  25. Soltanian MRK, Sharbirin AS, Ariannejad M, Amiri I, De La Rue R, Brambilla G et al (2016) Variable waist-diameter Mach–Zehnder tapered-fiber interferometer as humidity and temperature sensor. IEEE Sens J 16:5987–5992CrossRefGoogle Scholar
  26. Song Y, Liu M, Zhang Y, Wang X, Jin C (2011) High-Q photonic crystal slab nanocavity with an asymmetric nanohole in the center for QED. JOSA B 28:265–274CrossRefGoogle Scholar
  27. Taya SA, El-amssi D (2015) Reflection and transmission from left-handed material structures using Lorentz and Drude medium models. Opto-Electron Rev 23:214–221CrossRefGoogle Scholar
  28. Taya SA, Kullab HM (2014) Optimization of transverse electric peak-type metal-clad waveguide sensor using double-negative materials. Appl Phys A 116:1841–1846CrossRefGoogle Scholar
  29. Taya SA, Shaheen SA, Alkanoo AA (2017) Photonic crystal as a refractometric sensor operated in reflection mode. Superlattices Microstruct 101:299–305CrossRefGoogle Scholar
  30. Tomljenovic-Hanic S, Rahmani A, Steel MJ, and de Sterke CM (2009) Photonic crystal cavities for sensing: dielectric modes versus air modes. In: Lasers and electro-optics, 2009 and 2009 Conference on Quantum electronics and Laser Science Conference. CLEO/QELS 2009. Conference on, 2009, pp 1–2Google Scholar
  31. Udaiyakumar R, Junaid KM, Janani T, Maheshwar R, Yupapin P, Amiri I (2018) Optical properties study of nano-composite filled D shape photonic crystal fibre. Results Phys 9:1040–1043CrossRefGoogle Scholar
  32. Yang D, Tian H, Ji Y (2011) Nanoscale photonic crystal sensor arrays on monolithic substrates using side-coupled resonant cavity arrays. Opt Express 19:20023–20034CrossRefGoogle Scholar
  33. Zhao Y, Zhang Y-N, Lv R-Q (2015) Simultaneous measurement of magnetic field and temperature based on magnetic fluid-infiltrated photonic crystal cavity. IEEE Trans Instrum Meas 64:1055–1062CrossRefGoogle Scholar
  34. Zhou J, Zheng Y, Liu J, Bing X, Hua J, Zhang H (2016) A paper-based detection method of cancer cells using the photo-thermal effect of nanocomposite. J Pharm Biomed Anal 117:333–337CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • N. R. Ramanujam
    • 1
  • I. S. Amiri
    • 2
    • 3
  • Sofyan A. Taya
    • 4
  • Saeed Olyaee
    • 5
  • R. Udaiyakumar
    • 6
  • A. Pasumpon Pandian
    • 7
  • K. S. Joseph Wilson
    • 8
  • P. Mahalakshmi
    • 7
  • P. P. Yupapin
    • 2
  1. 1.Department of PhysicsK.L.N. College of EngineeringPottapalayamIndia
  2. 2.Computational Optics Research Group, Advanced Institute of Materials ScienceTon Duc Thang UniversityHo Chi Minh CityVietnam
  3. 3.Faculty of Applied SciencesTon Duc Thang UniversityHo Chi Minh CityVietnam
  4. 4.Department of PhysicsIslamic University of GazaGaza CityPalestine
  5. 5.Nano-photonics and Optoelectronics Research LaboratoryShahid Rajaee Teacher Training UniversityLavizanIran
  6. 6.Department of Electronics and Communication EngineeringSri Krishna College of TechnologyCoimbatoreIndia
  7. 7.Department of ECEVaigai College of EngineeringMaduraiIndia
  8. 8.Department of PhysicsArul Anandar College (Autonomous), KarumathurMaduraiIndia

Personalised recommendations