Advertisement

Microsystem Technologies

, Volume 24, Issue 12, pp 5027–5036 | Cite as

MEMS-based multi-modal vibration energy harvesters for ultra-low power autonomous remote and distributed sensing

  • J. IannacciEmail author
  • E. Serra
  • G. Sordo
  • M. Bonaldi
  • A. Borrielli
  • U. Schmid
  • A. Bittner
  • M. Schneider
  • T. Kuenzig
  • G. Schrag
  • G. Pandraud
  • P. M. Sarro
Technical Paper
  • 190 Downloads

Abstract

In this contribution, we discuss the implementation of a novel microelectromechanical-systems (MEMS)-based energy harvester (EH) concept within the technology platform available at the ISAS Institute (TU Vienna, Austria). The device, already presented by the authors, exploits the piezoelectric effect to convert environmental vibrations energy into electricity, and presents multiple resonant modes in the frequency range of interest (i.e. below 10 kHz). The experimental characterisation of a sputter deposited aluminium nitride piezoelectric thin-film layer is reported, leading to the extraction of material properties parameters. Such values are then incorporated in the finite element method model of the EH, implemented in Ansys Workbench™, in order to get reasonable estimates of the converted power levels achievable by the proposed device solution. Multiphysics simulations indicate that extracted power values in the range of several µW can be addressed by the EH-MEMS concept when subjected to mechanical vibrations up to 10 kHz, operating in closed-loop conditions (i.e. piezoelectric generator connected to a 100 kΩ resistive load). This represents an encouraging result, opening up the floor to exploitations of the proposed EH-MEMS device in the field of wireless sensor networks and zero-power sensing nodes.

Notes

References

  1. Akiyama M, Kano K, Teshigahara A (2009) Influence of growth temperature and scandium concentration on piezoelectric response of scandium aluminum nitride alloy thin films. Appl Phys Lett 95:1–4.  https://doi.org/10.1063/1.3251072 CrossRefGoogle Scholar
  2. ANSYS Inc. (2012a) DesignModeler user guide. http://www.ansys.com
  3. ANSYS Inc. (2012b) ANSYS parametric design language guide. http://www.ansys.com
  4. ANSYS Inc. (2012c) ANSYS mechanical APDL element reference. http://www.ansys.com
  5. Brennen RA, Pisano AP, Tang WC (1990) Multiple mode micromechanical resonators. In: Proceedings of IEEE MEMS, pp 9–14.  https://doi.org/10.1109/memsys.1990.110238
  6. Casset F, Durand C, Dedieu S, Carpentier JF, Gonchond JP, Ancey P, Robert P (2009) 3D multi-frequency MEMS electromechanical resonator design. In: Proceedings of 10th international conference on thermal, mechanical and multi-physics simulation and experiments in microelectronics and microsystems (EuroSimE), pp 1–5.  https://doi.org/10.1109/esime.2009.4938416
  7. Chamanian S, Bahrami M, Zangabad RP, Khodaei M, Zarbakhsh P (2012) Wideband capacitive energy harvester based on mechanical frequency-up conversion. In: Proceedings of IEEE sensors applications symposium (SAS), pp 1–4.  https://doi.org/10.1109/sas.2012.6166319
  8. Chandrahalim H, Bhave SA (2008) Digitally-tunable mems filter using mechanically-coupled resonator array. In: Proceedings of IEEE MEMS, pp 1020–1023.  https://doi.org/10.1109/memsys.2008.4443832
  9. Chidambaram N, Mazzalai A, Muralt P (2012) Comparison of lead zirconate titanate (PZT) thin films for MEMS energy harvester with interdigitated and parallel plate electrodes. In: Proceedings of ISAF/ECAPD/PFM, pp 1–4.  https://doi.org/10.1109/isaf.2012.6297833
  10. Coetzee L, Eksteen J (2011) The internet of things—promise for the future? An introduction. In: Proceedings of IST-Africa conference, pp 1–9Google Scholar
  11. Cugat O, Delamare J, Reyne G (2003) Magnetic micro-actuators and systems (MAGMAS). IEEE Trans Magn 39:3607–3612.  https://doi.org/10.1109/tmag.2003.816763 CrossRefGoogle Scholar
  12. Erturk A, Inman DJ (2011) Piezoelectric energy harvesting. Wiley, New YorkCrossRefGoogle Scholar
  13. Fu JL, Nakano Y, Sorenson LD, Ayazi F (2012) Multi-axis AlN-on-Silicon vibration energy harvester with integrated frequency-upconverting transducers. In: Proceedings of IEEE MEMS, pp 1269–1272.  https://doi.org/10.1109/memsys.2012.6170388
  14. Galchev T, Aktakka EE, Najafi K (2012) A piezoelectric parametric frequency increased generator for harvesting low-frequency vibrations. IEEE JMEMS 21:1311–1320.  https://doi.org/10.1109/jmems.2012.2205901 CrossRefGoogle Scholar
  15. Goldschmidtboeing F, Wischke M, Eichhorn C, Woias P (2009) Nonlinear effects in piezoelectric vibration harvesters with high coupling factors. In: Proceedings of PowerMEMS, pp 364–367.  https://doi.org/10.1177/1045389x09343218 CrossRefGoogle Scholar
  16. Hackmann G, Guo W, Yan G, Sun Z, Lu C, Dyke S (2014) Cyber-physical codesign of distributed structural health monitoring with wireless sensor networks. IEEE Trans Parallel Distrib Syst 25:63–72.  https://doi.org/10.1109/tpds.2013.30 CrossRefGoogle Scholar
  17. Hagiwara K, Goto M, Iguchi Y, Tajima T, Yasuno Y, Kodama H, Kidokoro K, Suzuki Y (2012) Electret charging method based on soft X-ray photoionization for MEMS transducers. IEEE Trans Dielectr Electr Insul 19:1291–1298.  https://doi.org/10.1109/tdei.2012.6260003 CrossRefGoogle Scholar
  18. Hajati A, Bathurst SP, Lee HJ, Kim SG (2011) Design and fabrication of a nonlinear resonator for ultra wide-bandwidth energy harvesting applications. In: Proceedings of IEEE MEMS, pp 1301–1304.  https://doi.org/10.1109/memsys.2011.5734672
  19. Halvorsen E (2013) Fundamental issues in nonlinear wide-band vibration energy harvesting. Phys Rev E 87:1–7.  https://doi.org/10.1103/physreve.87.042129 CrossRefGoogle Scholar
  20. Iannacci J (2017) Microsystem based energy harvesting (EH-MEMS): powering pervasivity of the internet of things (IoT)—a review with focus on mechanical vibrations. Elsevier J King Saud Univ Sci XX:1–9.  https://doi.org/10.1016/j.jksus.2017.05.019 CrossRefGoogle Scholar
  21. Iannacci J, Sordo G (2015) From MEMS to macro-world: a micro-milling machined wideband vibration piezoelectric energy harvester. In: Proceedings of SPIE smart sensors, actuators, and MEMS VII and cyber physical systems, vol 951705, pp 1–10.  https://doi.org/10.1117/12.2180143
  22. Iannacci J, Gottardi M, Serra E, Di Criscienzo R, Borrielli A, Bonaldi M (2013) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. In: Proceedings of SPIE smart sensors, actuators, and MEMS VI, 87630X, vol 8763, pp 1–12.  https://doi.org/10.1117/12.2016766
  23. Iannacci J, Sordo G, Gottardi M, Kuenzig T, Schrag G, Wachutka G (2013) An energy harvester concept for electrostatic conversion manufactured in mems surface micromachining technology. In: Proceedings of IEEE international semiconductor conference Dresden-Grenoble, pp 1–4.  https://doi.org/10.1109/iscdg.2013.6656310
  24. Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Springer Microsyst Technol 20:627–640.  https://doi.org/10.1007/s00542-013-1998-2 CrossRefGoogle Scholar
  25. Iannacci J, Sordo G, Serra E, Schmid U (2016) The MEMS four-leaf clover wideband vibration energy harvesting device: design concept and experimental verification. Springer Microsyst Technol 22:1865–1881.  https://doi.org/10.1007/s00542-016-2886-3 CrossRefGoogle Scholar
  26. Kamierski TJ, Beeby S (2010) Energy harvesting systems: principles, modeling and applications. Springer, BerlinGoogle Scholar
  27. Karangia R, Jadeja M, Upadhyay C, Chandwani H (2013) Battery-supercapacitor hybrid energy storage system used in electric vehicle. In: Proceedings of international conference on energy efficient technologies for sustainability (ICEETS), pp 688–691.  https://doi.org/10.1109/iceets.2013.6533468
  28. Kymissis J, Kendall C, Paradiso J, Gershenfeld N (1998) Parasitic power harvesting in shoes. In: Proceedings of the 2nd international symposium on wearable computers (ISWC), pp 132–139.  https://doi.org/10.1109/iswc.1998.729539
  29. Liu SW, Lye SW, Miao JM (2012) Sandwich structured electrostatic/electrets parallel-plate power generator for low acceleration and low frequency vibration energy harvesting. In: Proceedings of IEEE MEMS, pp 1277–1280.  https://doi.org/10.1109/memsys.2012.6170390
  30. Miki S, Fujita T, Kotoge T, Jiang YG, Uehara M, Kanda K, Higuchi K, Maenaka K (2012) Electromagnetic energy harvester by using buried NdFeB. In: Proceedings of IEEE MEMS, pp 1221–1224.  https://doi.org/10.1109/memsys.2012.6170409
  31. Prescher S, Bourke AK, Koehler F, Martins A, Sereno Ferreira H, Boldt Sousa T, Castro RN, Santos A, Torrent M, Gomis S, Hospedales M, Nelson J (2012) Ubiquitous ambient assisted living solution to promote safer independent living in older adults suffering from co-morbidity. In: Proceedings of the annual international conference of the IEEE engineering in medicine and biology society (EMBC), pp 5118–5121.  https://doi.org/10.1109/embc.2012.6347145
  32. Priya S, Inman DJ (eds) (2009) Energy harvesting technologies. Springer Science, BerlinGoogle Scholar
  33. Roundy S, Wright PK, Rabaey JM (2004) Energy scavenging for wireless sensor networks: with special focus on vibrations. Kluwer Academic Publishers, DordrechtCrossRefGoogle Scholar
  34. Sah RE, Kirste L, Baeumler M, Hiesinger P, Cimalla V, Lebedev V, Baumann H, Zschau H-E (2010) Residual stress stability in fiber textured stoichiometric AlN film grown using rf magnetron sputtering. J Vacuum Sci Technol A Vac Surf Films 28:394–399.  https://doi.org/10.1116/1.3360299 CrossRefGoogle Scholar
  35. Saif MTA, MacDonald NC (1996) Micro mechanical single crystal silicon fracture studies torsion and bending. In: Proceedings of IEEE MEMS, pp 105–109.  https://doi.org/10.1109/memsys.1996.493837
  36. Schalko J, Beigelbeck R, Stifter M, Schneider M, Bittner A, Schmid U (2011) Improved load-deflection method for the extraction of elastomechanical properties of circularly shaped thin-film diaphragms. In: Proceedings of SPIE, vol 8066, pp 1–8.  https://doi.org/10.1117/12.886824
  37. Solazzi F, Iannacci J, Faes A, Giacomozzi F, Margesin B, Tazzoli A, Meneghesso G (2011) Modeling and characterization of a circular-shaped energy scavenger in MEMS surface micromachining technology. In: Proceedings of SPIE microtechnologies conference, vol 8066, pp 1–8.  https://doi.org/10.1117/12.887559
  38. Sordo G, Serra E, Schmid U, Iannacci J (2015) Optimization method for designing multimodal piezoelectric MEMS energy harvesters. In: Proceedings of SPIE smart sensors, actuators, and MEMS VII and cyber physical systems, vol 95170O, pp 1–8.  https://doi.org/10.1117/12.2180953
  39. Sordo G, Iannacci J, Schmid U (2016a) Study on the effectiveness of different electrode geometries for sputtered aluminium nitride-based MEMS energy harvesters. In: Proceedings of symposium on design, test, integration and packaging of MEMS and MOEMS (DTIP), pp 213–216.  https://doi.org/10.1109/dtip.2016.7514871
  40. Sordo G, Serra E, Schmid U, Iannacci J (2016b) Optimization method for designing multimodal piezoelectric MEMS energy harvesters. Springer Microsyst Technol 22:1811–1820.  https://doi.org/10.1007/s00542-016-2848-9 CrossRefGoogle Scholar
  41. Suzuki M, Matsushita N, Hirata T, Yoneya R, Onishi J, Wada T, Takahashi T, Nishida T, Yoshikawa Y, Aoyagi S (2011) Fabrication of highly dielectric nano-BaTiO3/epoxy-resin composite plate having trenches by mold casting and its application to capacitive energy harvesting. In: Proceedings of 16th IEEE international solid-state sensors, actuators and microsystems conference (TRANSDUCERS), pp 2642–2645.  https://doi.org/10.1109/transducers.2011.5969873
  42. Tao K, Ding G, Wang P, Yang Z, Wang Y (2012) Fully integrated micro electromagnetic vibration energy harvesters with micro-patterning of bonded magnets. In: Proceedings of IEEE MEMS, pp 1237–1240.  https://doi.org/10.1109/memsys.2012.6170413
  43. Todorov G, Valtchev S, Todorov T, Ivanov I, Klaassens B (2011) Tuning techniques for kinetic MEMS energy harvesters. In: Proceedings of IEEE 33rd international telecommunications energy conference (INTELEC), pp 1–6, 2011.  https://doi.org/10.1109/intlec.2011.6099874
  44. Wagner J-M, Bechstedt F (2002) Properties of strained wurtzite GaN and AlN: ab initio studies. Phys Rev B 66:1–20.  https://doi.org/10.1103/physrevb.66.115202 CrossRefGoogle Scholar
  45. Wan ZG, Tan YK, Yuen C (2011) Review on energy harvesting and energy management for sustainable wireless sensor networks. In: Proceedings of the IEEE 13th international conference on communication technology (ICCT), pp 362–367.  https://doi.org/10.1109/icct.2011.6157897
  46. Zhu D (2011) Vibration energy harvesting: machinery vibration, human movement and flow induced vibration. In: Tan YK (ed) Sustainable energy harvesting technologies—past, present and future. InTech, RijekaGoogle Scholar
  47. Zorlu O, Topal ET, Külah H (2011) A vibration-based electromagnetic energy harvester using mechanical frequency up-conversion method. IEEE Sens J 11:481–488.  https://doi.org/10.1109/jsen.2010.2059007 CrossRefGoogle Scholar
  48. Zukauskaite A, Wingqvist G, Palisaitis J, Jensen J, Persson Per OÅ, Matloub R, Muralt P, Kim Y, Birch J, Hultman L (2012) Microstructure and dielectric properties of piezoelectric magnetron sputtered w-ScxAl1-xN thin films. J Appl Phys 111:1–7.  https://doi.org/10.1063/1.4714220 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Center for Materials and Microsystems (CMM)Fondazione Bruno Kessler (FBK)TrentoItaly
  2. 2.Gruppo Collegato di TrentoIstituto Nazionale di Fisica Nucleare (INFN)TrentoItaly
  3. 3.DIMES Technology CenterDelft University of TechnologyDelftThe Netherlands
  4. 4.Nanoscience-Trento-FBK DivisionInstitute of Materials for Electronics and MagnetismTrentoItaly
  5. 5.Institute of Sensor and Actuator Systems (ISAS)Vienna University of Technology (TUW)ViennaAustria
  6. 6.Institute for Physics of Electrotechnology (TEP)Munich University of Technology (TUM)MunichGermany

Personalised recommendations