Advertisement

Theoretical developments and clinical experiments of measuring blood flow volume (BFV) at arteriovenous fistula (AVF) using a photoplethysmography (PPG) sensor

  • Pei-Yu Chiang
  • Paul C.-P. Chao
  • Chih-Yu Yang
  • Der-Cherng Tarng
Technical Paper

Abstract

A new theoretical developments of measuring blood flow volume at arteriovenous fistula (AVF) using a photoplethysmography (PPG) sensor is presented in this work. The mathematical equation is derived under the practical perspective, aiming at applying to small-size, portable, inexpensive and easy-to-use PPG sensor, in order to replace bulky, expensive Doppler machines which is the commonly used instruments for accessing AVF noninvasively nowadays. Furthermore, a new, portable and wireless PPG sensor with ambient light compensation and motion artifact detection, is designed for performing clinical validation of the proposed equation. After neural network calibration with the gold standard, dilution concentration sensor, the experiment result reveals that the PPG sensors implementing the proposed equation successfully achieve much higher correlation (R2 = 0.8064) and much lower error (RMSE = 171.68 ml/min, MAPE = 15.84%) compared to the commercial Doppler machine and other previous works.

Notes

Acknowledgements

The authors appreciate the supports from Ministry of Science and Technology of Taiwan, ROC under the Grant nos. MOST 106-3114-E-009-004–, NARL-IOT-106-004, MOST 106-2218-E-009-011-, MOST 106-2221-E-009-089-, and it was also supported in part by the Novel Bioengineering and Technological Approaches to Solve Two Major Health Problems in Taiwan sponsored by the Taiwan Ministry of Science and Technology Academic Excellence Program under Grant no. MOST 106-2633-B-009-001.

References

  1. Bessems D, Rutten M, Vosse FVD (2007) A wave propagation model of blood flow in large vessels using an approximate velocity profile function. J Fluid Mech 580:145–168.  https://doi.org/10.1017/S0022112007005344 MathSciNetCrossRefzbMATHGoogle Scholar
  2. Bogdan E-I, Cristina S, Gabriele D, Andrea R (2015) Disturbed flow in a patient-specific arteriovenous fistula for hemodialysis: multidirectional and reciprocating near-wall flow patterns. J Biomech 48(10):2195–2200.  https://doi.org/10.1016/j.jbiomech.2015.04.013 (ISSN 0021-9290) CrossRefGoogle Scholar
  3. Browne LD, Bashar K, Griffin P, Kavanagh EG, Walsh SR, Walsh MT (2015) The role of shear stress in arteriovenous fistula maturation and failure: a systematic review. PLoS One 10(12):e0145795.  https://doi.org/10.1371/journal.pone.0145795 CrossRefGoogle Scholar
  4. Chao CP, Chiang PY (2017) Photoplethysmography signals processing using polynomial profile fitting for measuring the blood flow volume in arteriovenous fistula. In: The 26-th international conference on information storage and processing systems.  https://doi.org/10.1115/isps2017-5445
  5. Chao PCP, Chiang PY (2017) Theoretical development with proper approximation and the corresponding clinical experiments for PPG sensor monitoring blood flow volume of hemodialysis patients with arteriovenous fistula. In: 2017 international conference on applied system innovation (ICASI), Sapporo, pp 311–314.  https://doi.org/10.1109/icasi.2017.7988414
  6. Chiang PY, Chao PCP, Tarng DC, Yang CY (2017) A novel wireless photoplethysmography blood flow volume sensor for assessing arteriovenous fistula of hemodialysis patients. IEEE Trans Ind Electron 64(12):9626–9635.  https://doi.org/10.1109/tie.2017.2701780 CrossRefGoogle Scholar
  7. Dieffenderfer J, Goodell H, Mills S, McKnight M, Yao S, Lin F, Beppler E, Bent B, Lee B, Misra V, Zhu Y, Oralkan O, Strohmaier J, Muth J, Peden D, Bozkurt A (2017) Low power wearable systems for continuous monitoring of environment and health for chronic respiratory disease. IEEE J Biomed Health Inform 20(5):1251–1264.  https://doi.org/10.1109/JBHI.2016.2573286 CrossRefGoogle Scholar
  8. Ding XR, Zhang YT, Liu J, Dai WX, Tsang HK (2016) Continuous cuffless blood pressure estimation using pulse transit time and photoplethysmogram intensity ratio. IEEE Trans Biomed Eng 63(5):964–972.  https://doi.org/10.1109/tbme.2015.2480679 CrossRefGoogle Scholar
  9. Dubey H, Constant N, Mankodiya K (2017) RESPIRE: a spectral kurtosis-based method to extract respiration rate from wearable PPG signals. In: 2017 IEEE/ACM international conference on connected health: applications, systems and engineering technologies (CHASE), Philadelphia, PA, pp 84–89.  https://doi.org/10.1109/chase.2017.64
  10. Grechy L, Iori F, Corbett RW, Shurey S, Gedroyc W, Duncan N, Caro CG, Vincent PE (2017) Suppressing unsteady flow in arterio-venous fistulae. Phys Fluids 29:10190.  https://doi.org/10.1063/1.5004190 CrossRefGoogle Scholar
  11. Greenfield JC, Fry DL (1965) Relationship between instantaneous aortic flow and the pressure gradient. Circ Res 17(4):340–348.  https://doi.org/10.1161/01.RES.17.4.340 CrossRefGoogle Scholar
  12. Hammes M (2015) Hemodynamic and biologic determinates of arteriovenous fistula outcomes in renal failure patients. Biomed Res Int.  https://doi.org/10.1155/2015/171674 Google Scholar
  13. Huang SC, Hung PH, Hong CH, Wang HM (2014) A new image blood pressure sensor based on PPG, RRT, BPTT, and harmonic balancing. IEEE Sens J 14(10):3685–3692.  https://doi.org/10.1109/jsen.2014.2329676 CrossRefGoogle Scholar
  14. Huberts W, Bode AS, Kroon W, Planken RN, Tordoir JHM, Vosse FNVD, Bosboom EMH (2012) A pulse wave propagation model to support decision-making in vascular access planning in the clinic. Med Eng Phys 34(2):233–248.  https://doi.org/10.1016/j.medengphy.2011.07.015 (ISSN 1350-4533) CrossRefGoogle Scholar
  15. Kao YH, Chao PCP, Wey CL (2018) Towards maximizing the sensing accuracy of an cuffless optical blood pressure sensor using a high-order front-end filter. J Microsyst Technol.  https://doi.org/10.1007/s00542-018-3877-3 Google Scholar
  16. Kim J, Kim J, Ko H (2016) Low-power photoplethysmogram acquisition integrated circuit with robust light interference compensation. Sensors (Basel) 16(1):46.  https://doi.org/10.3390/s16010046 CrossRefGoogle Scholar
  17. Krivitski NM (1995) Theory and validation of access flow measurement by dilution technique during hemodialysis. Kidney Int 48(1):244–250.  https://doi.org/10.1038/ki.1995.290 CrossRefGoogle Scholar
  18. Li MC, Lin YH (2015) A real-time non-contact pulse rate detector based on smartphone. In: 2015 international symposium on next-generation electronics (ISNE), Taipei, pp 1–3.  https://doi.org/10.1109/isne.2015.7132025
  19. Lin PC, Huang PH, Chang CC, Hsu HY, Hsiao TC (2015) A novel index of photoplethysmography by using instantaneous pulse rate variability during non-stationary condition. In: 2015 IEEE international conference on consumer electronics—Taiwan, Taipei, pp 100–101.  https://doi.org/10.1109/icce-tw.2015.7216799
  20. Lui EYL, Steinman AH, Cobbold RSC, Johnston KW (2005) Human factors as a source of error in peak Doppler velocity measurement. J Vasc Surg 42(5):972.e1–972.e10.  https://doi.org/10.1016/j.jvs.2005.07.014 CrossRefGoogle Scholar
  21. May RE, Himmelfarb J, Yenicesu M, Knights S, Ikizler TA, Schulman G, Schulman MH, Shyr Y, Hakim RM (1997) Predictive measures of vascular access thrombosis: a prospective study. Kidney Int 52(6):1656–1662.  https://doi.org/10.1038/ki.1997.499 CrossRefGoogle Scholar
  22. McGah PM, Leotta DF, Beach KW, Zierler RE, Aliseda A (2012) Incomplete restoration of homeostatic shear stress within arteriovenous fistulae. J Biomech Eng.  https://doi.org/10.1115/1.4023133 Google Scholar
  23. Nasouri B, Murphy TE, Berberoglu H (2014) Near infrared laser penetration and absorption in human skin. Proc SPIE.  https://doi.org/10.1117/12.2040337 Google Scholar
  24. National Kidney Foundation (2006) KDOQI clinical practice guidelines and clinical practice recommendations for 2006 updates: hemodialysis adequacy peritoneal dialysis adequacy and vascular access. Am J Kidney Dis 48(suppl 1):S1–S322.  https://doi.org/10.1053/j.ajkd.2006.03.051 Google Scholar
  25. Nicole V (2011) A Hemodynamic investigation of a complete arteriovenous model of the arm, arteriovenous fistula, and distal revascularization and interval ligation. Thesis, Rochester Institute of TechnologyGoogle Scholar
  26. Nitzan M, Romem A, Koppel R (2014) Pulse oximetry: fundamentals and technology update. Med Devices (Auckland, N.Z.).  https://doi.org/10.2147/mder.s47319 Google Scholar
  27. Orozco L (2013) Programmable-gain transimpedance amplifiers maximize dynamic range in spectroscopy systems. Analog Dialogue 47(5):1–5Google Scholar
  28. Rhee S, Yang B-H, Asada HH (2001) Artifact-resistant power-efficient design of finger-ring plethysmographic sensors. IEEE Trans Biomed Eng 48(7):795–805.  https://doi.org/10.1109/10.930904 CrossRefGoogle Scholar
  29. Rutherford RB (2000) Vascular surgery. W. B. Saunders Company, PhiladelphiaGoogle Scholar
  30. Sigovan M, Rayz V, Gasper W, Alley HF, Owens CD, Saloner D (2013) Vascular remodeling in autogenous arterio-venous fistulas by MRI and CFD. Ann Biomed Eng 41(4):657–668.  https://doi.org/10.1007/s10439-012-0703-4 CrossRefGoogle Scholar
  31. Tamura T, Maeda Y, Sekine M, Yoshida M (2014) Wearable photoplethysmographic sensors—past and present. Electronics 3(2):282–302.  https://doi.org/10.3390/electronics3020282 CrossRefGoogle Scholar
  32. Temko A (2017) Accurate heart rate monitoring during physical exercises using PPG. IEEE Trans Biomed Eng 64(9):2016–2024.  https://doi.org/10.1109/tbme.2017.2676243 CrossRefGoogle Scholar
  33. Tessitore N, Bedogna V, Gammaro L, Lipari G, Poli A, Baggio E, Firpo M, Morana G, Mansueto G, Maschio G (2003) Diagnostic accuracy of ultrasound dilution access blood flow measurement in detecting stenosis and predicting thrombosis in native forearm arteriovenous fistulae for hemodialysis. Am J Kidney Dis 42(2):331–341.  https://doi.org/10.1016/S0272-6386(03)00659-0 CrossRefGoogle Scholar
  34. Thomas SS, Nathan V, Zong C, Soundarapandian K, Shi X, Jafari R (2016) BioWatch: a noninvasive wrist-based blood pressure monitor that incorporates training techniques for posture and subject variability. IEEE J Biomed Health Inform 20(5):1291–1300.  https://doi.org/10.1109/jbhi.2015.2458779 CrossRefGoogle Scholar
  35. Wang CY, Tang KT (2011) Active noise cancellation of motion artifacts in pulse oximetry using isobestic wavelength light source. In: 2011 IEEE international symposium of circuits and systems (ISCAS), Rio de Janeiro, pp 1029–1032.  https://doi.org/10.1109/iscas.2011.5937744
  36. Whittier WL (2009) Surveillance of hemodialysis vascular access. Semin Interv Radiol 26(2):130–138.  https://doi.org/10.1055/s-0029-1222457 CrossRefGoogle Scholar
  37. Wilhelm KP, Elsner P, Berardesca E, Maibach HI (2006) Bioengineering of the skin: skin imaging & analysis. CRC Press, Boca Raton, Florida, United StatesGoogle Scholar
  38. Womersley JR (1955) Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known. J Physiol 127(3):553–563.  https://doi.org/10.1113/jphysiol.1955.sp005276 CrossRefGoogle Scholar
  39. Wong V, Ward R, Taylor J, Selvakumar S, How TV, Bakran A (1996) Factors associated with early failure of arteriovenous fistulae for haemodialysis access. Eur J Vasc Endovasc Surg 12(2):207–213.  https://doi.org/10.1016/S1078-5884(96)80108-0 CrossRefGoogle Scholar
  40. Wu JX, Lin CH, Wu MJ, Li CM, Lim BY, Du YC (2015) Bilateral photoplethysmography analysis for arteriovenous fistula dysfunction screening with fractional-order feature and cooperative game-based embedded detector. Healthc Technol Lett 2(3):64–69.  https://doi.org/10.1049/htl.2014.0090 CrossRefGoogle Scholar
  41. Wu J-X, Chen G-C, Wu M-J, Lin C-H, Chen T (2017) Bilateral photoplethysmography for arterial steal detection in arteriovenous fistula using a fractional-order decision-making quantizer. Med Biol Eng Comput 55:257–270.  https://doi.org/10.1007/s11517-016-1503-z CrossRefGoogle Scholar
  42. Yilmaz T, Foster R, Hao Y (2010) Detecting vital signs with wearable wireless sensors. Sensors (Basel, Switzerland) 10(12):10837–10862.  https://doi.org/10.3390/s101210837 CrossRefGoogle Scholar
  43. Young DF, Tsai FY (1973) Flow characteristics in models of arterial stenoses—II. Unsteady flow. J Biomech 6(5):547–559.  https://doi.org/10.1016/0021-9290(73)90012-2 CrossRefGoogle Scholar
  44. Zeraati A, Mousavi SSB, Mousavi MB (2013) A review article: access recirculation among end stage renal disease patients undergoing maintenance hemodialysis. Nephrourol Mon 5(2):728–732.  https://doi.org/10.5812/numonthly.6689 CrossRefGoogle Scholar
  45. Zhu F, Williams S, Putnam H, Campos I, Ma J, Johnson C, Kappel F, Kotanko P (2016) Estimation of arterio-venous access blood flow in hemodialysis patients using video image processing technique. In: 2016 38th annual international conference of the IEEE engineering in medicine and biology society (EMBC), Orlando, FL, pp 207–210.  https://doi.org/10.1109/embc.2016.7590676

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Electrical EngineeringNational Chiao Tung UniversityHsinchuTaiwan
  2. 2.Division of NephrologyTaipei Veterans General HospitalTaipeiTaiwan

Personalised recommendations