Skip to main content

Self-identification algorithm for zeolite-based thermal capacity gas sensor

Abstract

We demonstrate a new operation mode of thermal gas sensor based on thermal capacity extraction with identification algorithm. The system is a silicon microstructure covered with zeolites operated at constant temperature while stimulated by heat pseudo-random sequence. The proposed detection principle is demonstrated at room temperature and atmospheric pressure through the detection of gas water molecules with an hydrophilic FAU-type zeolite coating. The identification algorithm is a continuous-time closed-loop identification algorithm based on the instrumental variable principle.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Awala H, Gilson J-P, Retoux R, Boullay P, Goupil J-M, Valtchev V, Mintova S (2015) Template-free nanosized faujasite-type zeolites. Nat Mater 14:447–451

    Article  Google Scholar 

  2. Battiston FM, Ramseyer J-P, Lang HP, Baller MK, Gerber Ch, Gimzewski JK, Meyer E, Guntherodt H-J (2001) A chemical sensor based on a microfabricated cantilever array with simultaneous resonance frequency and bending readout. Sens Actuators B 77:122–131

    Article  Google Scholar 

  3. Berger R, Gerber Ch, Gimzewski JK (1996) Thermal analysis using a micromechanical calorimeter. Appl Phys Lett 69(1):40–42

    Article  Google Scholar 

  4. Denoual M, Allègre G, Delaunay S, Robbes D (2009) Capacitively coupled electrical substitution for resistive bolometer enhancement. Meas Sci Technol 20:015105

    Article  Google Scholar 

  5. Denoual M, Robbes D, Inoue S, Mita Y, Grand J, Awala H, Mintova S (2017) Thermal resonant zeolite-based gas sensor. Sensor Actuators B Chem 245:179–182

    Article  Google Scholar 

  6. Denoual M, Pouliquen M, Robbes D, de Sagazan O, Grand J, Awala H, Mintova S, Inoue S, Mita-Tixier A, Mita Y (2016) Microfabricated test structures for thermal gas sensors. In: Proc. of ICMTS

  7. Gilson M, Garnier H, Young P, Van den Hof P (2008) Instrumental variable methods for closed-loop continuous-time system identification. In: Garnier H, Wangs L (eds) Identification of continuous-time models from sampled data. Springer, London, pp 133–160

    Chapter  Google Scholar 

  8. Van den Hof P (1998) Closed-loop issues in system identification. Annu Rev Control 22:173–186

    Article  Google Scholar 

  9. Ljung L (1999) System identification: theory for the user. Prentice Hall, Upper Saddle River

    Book  MATH  Google Scholar 

  10. Senesac LR, Yi D, Greve A, Hales JH, Davis ZJ, Nicholson DM, Boisen A, Thundat T (2006) Microdifferential thermal analysis detection of adsorbed explosive molecules using microfabricated bridges. Rev Sci Instrum 80:035102

    Article  Google Scholar 

  11. Thomas S, Bazin P, Lakiss L, de Waele V, Mintova S (2011) In situ infrared molecular detection using palladium-containing zeolite films. Langmuir 27:14689–14695

    Article  Google Scholar 

  12. Thomson GW (1946) The antoine equation for vapor-pressure data. Chem Rev 38:1–39

    Article  Google Scholar 

  13. Urbiztondo MA, Peralta A, Pellejero I, Ses J, Pina MP, Dufour I, Santamaria J (2012) Detection of organic vapours with Si cantilevers coated with inorganic (zeolites) or organic (polymer) layers. Sens Actuators B 171–172:822–831

    Article  Google Scholar 

Download references

Acknowledgements

The project was supported by the French and Japanese bilateral exchange program PRC JSPS-CNRS and Normandy C2-MTM Project. Micro-fabrication process was done in the Takeda clean room at the University of Tokyo, partially financed by the MEXT Nanotechnology Platform.

Author information

Affiliations

Authors

Corresponding author

Correspondence to M. Pouliquen.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pouliquen, M., Denoual, M., Jorel, C. et al. Self-identification algorithm for zeolite-based thermal capacity gas sensor. Microsyst Technol (2018). https://doi.org/10.1007/s00542-018-3883-5

Download citation