Microsystem Technologies

, Volume 24, Issue 9, pp 3843–3849 | Cite as

A series expansion method aided design of CCII controller for a TITO system

  • Vijay Kumar Verma
  • Rajeev Kumar Ranjan
  • Pooja Gupta
  • Bindu Priyadarshini
  • Vijay Nath
Technical Paper


Current mode circuits have attracted the attention of the design engineers due to their unique characteristics that are not found in their voltage mode counterparts. This article presents a series expansion method based design of current mode circuits for the control of a two input two output (TITO) system. The unique contribution of this work is the realization of the TITO controller using the second generation current conveyor circuits. The controller was practically implemented using AD844 integrated circuits. Simulation and the experimental results are presented for a pragmatic case study to demonstrate the efficacy of the proposed design methodology.


  1. Abdullah Y, Kacar F (2017) Band-pass filter with high quality factor based on current differencing transconductance amplifier and current amplifier. AEU Int J Electron Commun. Scholar
  2. Abuelma’atti Muhammad Taher (1994) Current-mode multiphase oscillator using current followers. Microelectron J 25(6):457–461. CrossRefGoogle Scholar
  3. ACAR CEATC (2000) Current conveyor based proportional-integral-derivative (PID) controller and calculating optimum parameter tolerances. In: International conference on optimization of electrical and electronic equipmentsGoogle Scholar
  4. Aronhime P (1974) Transfer-function synthesis using a current conveyor. IEEE Trans Circuits Syst 21(2):312–313. CrossRefGoogle Scholar
  5. Chunhua W et al (2011) A new current-mode current-controlled SIMO-type universal filter. AEU Int J Electron Commun 65(3):231–234. CrossRefGoogle Scholar
  6. El-Adawy AA, Ahmed MS, Hassan OE (2002) Low voltage digitally controlled CMOS current conveyor. AEU Int J Electron Commun 56(3):137–144. CrossRefGoogle Scholar
  7. Erdal C, Kuntman H, Kafali S (2004) A current controlled conveyor based proportional-integral-derivative (PID) controller. J Electr Electron Eng 4(2):1248–1248.
  8. Guo L, Songyin C (2014) Anti-disturbance control theory for systems with multiple disturbances: a survey. ISA Trans 53(4):846–849. CrossRefGoogle Scholar
  9. Hwang C, Yen-Ping S, Rong-Yuang W (1997) An efficient FFT-based algorithm for power series expansions. Comput Chem Eng 21(9):1043–1049. CrossRefGoogle Scholar
  10. Katsuhiko O (1999) Modern control engineering. Book Rev 35:1181–1184Google Scholar
  11. Kuo BC (1997) Automatic control systems. Prentice-Hall, Upper Saddle RiverGoogle Scholar
  12. Maghade DK, Patre BM (2012) Decentralized PI/PID controllers based on gain and phase margin specifications for TITO processes. ISA Trans 51(4):550–558. CrossRefGoogle Scholar
  13. Pandey N, Nand D, Khan Z (2013) Single-input four-output current mode filter using operational floating current conveyor. Active Passive Electron Compon. Google Scholar
  14. Patranabis D, Ghosh D (1984) Integrators and differentiators with current conveyors. IEEE Trans Circuits Syst 31(6):567–569. CrossRefGoogle Scholar
  15. Ranjan RK, Choubey CK, Nagar BC, Paul SK (2016) Comb filter for elimination of unwanted power line interference in biomedical signal. J Circuits Syst Comput 25(06):1650052. CrossRefGoogle Scholar
  16. Safari L, Minaei S (2016) A simple low voltage, high output impedance resistor based current mirror with extremely low input and output voltage requirements. In: 39th International conference on telecommunications and signal processing (TSP). IEEE.
  17. Sedra AS (1989) The current conveyor: history and progress. IEEE international symposium on circuits and systems.
  18. Sedra A, Smith K (1970) A second-generation current conveyor and its applications. IEEE Trans Circuit Theory 17(1):132–134. CrossRefGoogle Scholar
  19. Tavakoli S, Griffin I, Fleming PJ (2006) Tuning of decentralized PI (PID) controllers for TITO processes. Control Eng Pract 14(9):1069–1080. CrossRefGoogle Scholar
  20. Tek H, Anday FUAT (1989) Voltage transfer function synthesis using current conveyors. Electron Lett 25:1552–1553. CrossRefGoogle Scholar
  21. Toumazou C, Lidgey FJ, Haigh DG (1990) Analogue IC design: the current mode approach. IEE Circuits and Systems Series 2. Peter Peregrinus Ltd.Google Scholar
  22. Wang QG, Huang B, Guo X (2000) Auto-tuning of TITO decoupling controllers from step tests. ISA Trans 39(4):407–418. CrossRefGoogle Scholar
  23. Wilson B (1990) Recent developments in current conveyors and current-mode circuits. IEE Proc G Circuits Devices Syst 137(2):63–77. CrossRefGoogle Scholar
  24. Worapong T, Dumawipata T, Surakampontorn W (2007) Multiple-input single-output current-mode multifunction filter using current differencing transconductance amplifiers. AEU-Int J Electron Commun 61(4):209–214. CrossRefGoogle Scholar
  25. Worapong T, Tanjaroen W, Pukkalanun T (2009) Current-mode multiphase sinusoidal oscillator using CDTA-based all pass sections. AEU-Int J Electron Commun 63(7):616–622. CrossRefGoogle Scholar
  26. Zhuang M, Atherton DP (1994) PID controller design for a TITO system. IEE Proc Control Theory Appl 141(2):111–120.

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Vijay Kumar Verma
    • 1
  • Rajeev Kumar Ranjan
    • 3
  • Pooja Gupta
    • 1
  • Bindu Priyadarshini
    • 3
  • Vijay Nath
    • 2
  1. 1.School of Electronics EngineeringKIIT Deemed to be UniversityBhubaneswarIndia
  2. 2.Department of Electronics and Communication EngineeringBirla Institute of TechnologyMesraIndia
  3. 3.Department of Electronics EngineeringIndian Institute of Technology (ISM)DhanbadIndia

Personalised recommendations