Advertisement

Microsystem Technologies

, Volume 24, Issue 9, pp 3823–3832 | Cite as

Piezoelectric-thermo-elastic coupling effect analysis for piezoelectric vibration energy harvester

  • Ping Li
  • Changlong Li
  • Binglong Cong
Technical Paper
  • 74 Downloads

Abstract

The paper investigates the influence of piezoelectric-thermo-elastic coupling on the piezoelectric material in piezoelectric energy harvester for the flexural vibration. The coupled constitutive equations which present the mechanical, thermal and electric fields correlation are derived and the field parameters of displacement, temperature and output voltage are deduced. Then the frequency shift ratio and piezoelectric-thermo-elastic damping which is influenced by the irreversible heat energy dissipation are concluded. The comparison of piezoelectric structure is made between piezoelectric-thermo-elastic coupling fields and piezoelectric-elastic fields to determine the effect of temperature on piezoelectric structure. The numerical results with the help of MATLAB software are proposed graphically for intuitional presentation of the piezoelectric-thermo-elastic coupling effect on lead zirconate titanate (PZT)-5H structure of energy harvester.

References

  1. Ahmad SN, Upadhyay CS, Venkatesan C (2006) Electro-thermo-elastic formulation for the analysis of smart structures. Smart Mater Struct 15(2):401CrossRefGoogle Scholar
  2. Andosca R, McDonald TG, Genova V et al (2012) Experimental and theoretical studies on MEMS piezoelectric vibrational energy harvesters with mass loading. Sens Actuators A 178:76–87CrossRefGoogle Scholar
  3. Chattopadhyay A, Li J, Gu H (1999) Coupled thermo-piezoelectric-mechanical model for smart composite laminates. AIAA J 37(12):1633–1638CrossRefGoogle Scholar
  4. Curie J, Curie P (1880) Développement, par pression, de l’électricité polaire dans les cristaux hémièdres à faces inclinées. Comptes Rendus 91:294–295zbMATHGoogle Scholar
  5. Dutoit NE, Wardle BL, Kim SG (2005) Design considerations for MEMS-scale piezoelectric mechanical vibration energy harvesters. Integr Ferroelectr 71(1):121–160CrossRefGoogle Scholar
  6. Duwel A, Candler RN, Kenny TW et al (2006) Engineering MEMS resonators with low thermoelastic damping. Microelectromech Syst J 15(6):1437–1445CrossRefGoogle Scholar
  7. Fahsi B (2015) Study of a piezo-thermo-elastic materials console. J Mater Eng Struct. JMES 2(3):130–144Google Scholar
  8. Grover D, Sharma JN (2012) Transverse vibrations in piezothermoelastic beam resonators. J Intell Mater Syst Struct 23(1):77–84CrossRefGoogle Scholar
  9. Ikeda T (1996) Fundamentals of piezoelectricity. Oxford University Press, OxfordGoogle Scholar
  10. Li P, Fang Y, Rufu H (2012) Thermoelastic damping in rectangular and circular microplate resonators. J Sound Vib 331(3):721–733CrossRefGoogle Scholar
  11. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro-and nanomechanical systems. Phys Rev B 61(8):5600CrossRefGoogle Scholar
  12. Liu JQ, Fang HB, Xu ZY et al (2008) A MEMS-based piezoelectric power generator array for vibration energy harvesting. Microelectron J 39(5):802–806CrossRefGoogle Scholar
  13. Mindlin RD (1989) On the equations of motion of piezoelectric crystals. Probl Contin Mech 1:282–290Google Scholar
  14. Nowacki W (1978) Some general theorems of thermopiezoelectricity. J Therm Stresses 1(2):171–182CrossRefGoogle Scholar
  15. Sharma JN (2011) Thermoelastic damping and frequency shift in micro/nanoscale anisotropic beams. J Therm Stresses 34(7):650–666CrossRefGoogle Scholar
  16. Vahdat AS, Rezazadeh G, Ahmadi G (2012) Thermoelastic damping in a micro-beam resonator tunable with piezoelectric layers. Acta Mech Solida Sin 25(1):73–81CrossRefGoogle Scholar
  17. Vigevani G, Kuypers J, Pisano AP (2008) Modeling of thermoelastic damping in piezoelectric aluminum nitride tuning forks. Proc, Ultrason ElectronGoogle Scholar
  18. Yang JS, Batra RC (1995) Free vibrations of a linear thermopiezoelectric body. J Therm Stresses 18(2):247–262CrossRefGoogle Scholar
  19. Younis MI (2011) MEMS linear and nonlinear statics and dynamics. Springer Science & Business Media, BerlinCrossRefGoogle Scholar
  20. Zener C (1937) Internal friction in solids. I. Theory of internal friction in reeds. Phys Rev 52(3):230CrossRefzbMATHGoogle Scholar
  21. Zhou SW, Rogers CA (1995) Heat generation, temperature, and thermal stress of structurally integrated piezo-actuators. J Intell Mater Syst Struct 6(3):372–379CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Beijing Research Institute of Mechanical EquipmentBeijingChina
  2. 2.State Key Laboratory of Explosion Science and TechnologyBeijing Institute of TechnologyBeijingChina

Personalised recommendations