Skip to main content
Log in

On robust watermark detection for optimum multichannel compressive transmission

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

An improved detection model for spread spectrum image watermarking is developed assuming that compressive measurements of watermarked image are transmitted over multiple channels. A closed form expression of detection threshold in log-likelihood ratio model is derived followed by developing the two optimization problems. First one is to find the optimal number of compressed sensing measurements as the product of the number of channels and the number of samples per channel (bandwidth) under the constraint of a detection reliability and watermarked image power. The second one finds an optimal set of watermarked image measurements (that lead to watermarked image power) under the constraint of a detection reliability. Extensive simulation results are reported to highlight the efficacy of the watermark detector for both the optimization problems. An improvement of \(\sim \) 5.65% in detection performance is observed for 82.35% CS measurements and for a given probability of false alarm value 0.1 on multiplicative (fading) degradation having power 0.7.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ahmed F, Anees A, Abbas VU, Siyal MY (2014) A noisy channel tolerant image encryption scheme. Wirel Personal Commun 77(4):2771–2791

    Article  Google Scholar 

  • Bian Y, Liang S (2013) Image watermark detection in the wavelet domain using bessel k densities. IET Image Process 7(4):281–289

    Article  MathSciNet  Google Scholar 

  • Bose A, Maity SP (2017) Spread spectrum watermark detection on degraded compressed sensing. IEEE Sens Lett 1:4

    Article  Google Scholar 

  • Bose A, Maity SP (2017) On robust watermark detection for optimum multichannel compressive transmission. In: Proceedings of computational intelligence, communications, and business analytics. Springer, Berlin

  • Bose A, Maity SP, Delpha C (2014) On improved spread spectrum watermark detection under compressive sampling. In: Proceedings of 5th European workshop on visual information processing (EUVIP). pp 1–6

  • Bose A, Maity SP (2016) Improved spread spectrum compressive image watermark detection with distortion minimization. In: International conference on signal processing and communications (SPCOM), IEEE. pp 1–5

  • Cox IJ, Kilian J, Leighton T, Shamoon T (1997) Secure spread spectrum watermarking for multimedia. IEEE Trans Image Process 6:1673–1687

    Article  Google Scholar 

  • Ding W, Lu Y, Yang F, Dai W, Li P, Liu S, Song J (2016) Spectrally efficient csi acquisition for power line communications: a Bayesian compressive sensing perspective. IEEE J Sel Areas Commun 34(7):2022–2032

    Article  Google Scholar 

  • Donoho DL, Tsaig Y, Drori I, Starck JL (2012) Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit. IEEE Trans Inf Theory 58(2):1094–1121

    Article  MathSciNet  Google Scholar 

  • Goldsmith A (2005) Wireless communications. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gonçalves D, Costa DG (2015) A survey of image security in wireless sensor networks. J Image 1(1):4–30

    Google Scholar 

  • Gu ZF, Li GF, Yang ZX (2012) Study on digital image watermark algorithm based on chaos mapping and dwt. In: Proceedings of international conference on advanced mechatronic systems. pp 160–164

  • Huang HC, Chang FC, Wu CH, Lai WH (2012) Watermarking for compressive sampling applications. In: 2012 Eighth international conference on intelligent information hiding and multimedia signal processing. pp 223–226

  • Kong L, Zhang D, He Z, Xiang Q, Wan J, Tao M (2016) Embracing big data with compressive sensing: a green approach in industrial wireless networks. IEEE Commun Mag 54(10):53–59

    Article  Google Scholar 

  • Liu H, Xiao D, Zhang R, Zhang Y, Bai S (2016) Robust and hierarchical watermarking of encrypted images based on compressive sensing. Signal Process Image Commun 45:41–51

    Article  Google Scholar 

  • Ntranos V, Maddah-Ali MA, Caire G (2015) Cellular interference alignment. IEEE Trans Inf Theory 61(3):1194–1217

    Article  MathSciNet  Google Scholar 

  • Pudlewski S, Melodia T (2013) A tutorial on encoding and wireless transmission of compressively sampled videos. IEEE Commun Surv Tutor 15(2):754–767

    Article  Google Scholar 

  • Qin Z, Liu Y, Gao Y, Elkashlan M, Nallanathan A (2017) Wireless powered cognitive radio networks with compressive sensing and matrix completion. IEEE Trans Commun 65(4):1464–1476

    Article  Google Scholar 

  • Rathore H, Mohamed A, Al-Ali A, Du X, Guizani M (2017) A review of security challenges, attacks and resolutions for wireless medical devices. In: 2017 13th international wireless communications and mobile computing conference (IWCMC), IEEE. pp 1495–1501

  • Tanchenko A (2014) Visual-psnr measure of image quality. J Visual Commun Image Represent 25(5):874–878

    Article  Google Scholar 

  • Tse D, Viswanath P (2005) Fundamentals of wireless communication. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Wang A, Lin F, Jin Z, Xu W (2016) A configurable energy-efficient compressed sensing architecture with its application on body sensor networks. IEEE Trans Ind Inf 12(1):15–27

    Article  Google Scholar 

  • Wang A, Zeng B, Chen H (2014) Wireless multicasting of video signals based on distributed compressed sensing. Signal Process Image Commun 29(5):599–606

    Article  Google Scholar 

  • Wang Q, Zeng W, Tian J (2014) A compressive sensing based secure watermark detection and privacy preserving storage framework. IEEE Trans Image Process 23(3):1317–1328

    Article  MathSciNet  Google Scholar 

  • Wu H, Tao X, Han Z, Li N, Xu J (2017) Secure transmission in misome wiretap channel with multiple assisting jammers: maximum secrecy rate and optimal power allocation. IEEE Trans Commun 65(2):775–789

    Article  Google Scholar 

  • Xiang S, Cai L (2013) Transmission control for compressive sensing video over wireless channel. IEEE Trans Wirel Commun 12(3):1429–1437

    Article  MathSciNet  Google Scholar 

  • Yu Y, Sun S, Madan RN, Petropulu A (2014) Power allocation and waveform design for the compressive sensing based mimo radar. IEEE Trans Aerosp Electron Syst 50(2):898–909

    Article  Google Scholar 

  • Zhou F, Beaulieu NC, Li Z, Si J, Qi P (2016) Energy-efficient optimal power allocation for fading cognitive radio channels: ergodic capacity, outage capacity, and minimum-rate capacity. IEEE Trans Wirel Commun 15(4):2741–2755

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Santi P. Maity.

Appendices

Appendix A

1.1 Parameter estimation of the detector

Let \(\mu _{\mathcal {H}_i}\) and \(\sigma _{\mathcal {H}_i}^2\) be the mean and the variance of \(t(\mathbf {Y})\) under \(\mathcal {H}_i~ (i=0,1)\). Then the detector distribution parameters are derived as,

$$\begin{aligned} \mu _{\mathcal {H}_0}&= E[t(\mathbf {Y}) / \mathcal {H}_0] \\&= E[\mathbf {Y}^T \mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P} / \mathcal {H}_0] \\&= E[(\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta })^T \mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P}] \\&\approx 0 \\ \mu _{\mathcal {H}_1}&= E[t(\mathbf {Y}) / \mathcal {H}_1] \\&= E[\mathbf {Y}^T \mathbf {W}\varvec{\mathbf {H}\Theta }\mathbf {P} / \mathcal {H}_1] \\&= E[(\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta } + \alpha \mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P})^T \mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P}] \\&=\alpha \Vert \mathbf {W} \Vert _2^2\sigma _h^2 E[\Vert \varvec{\Theta } \mathbf {P} \Vert _2^2] =\alpha \frac{LK}{N} \Vert \mathbf {W} \Vert _2^2\sigma _h^2 \sigma _\mathbf {P}^2 \\ \sigma _{\mathcal {H}_0}^2&=E[\lbrace t(\mathbf {Y} / \mathcal {H}_0) \rbrace ^2] = E[\lbrace \mathbf {Y}^T \mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P} / \mathcal {H}_0 \rbrace ^2]~[\because \mu _{\mathcal {H}_0}=0] \\&=E[(\mathbf {Y}^T \mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P})^T (\mathbf {Y}^T \mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P})] \\&=E[(\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P})^T \mathbf {Y}\mathbf {Y}^T (\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P})] \\&=\frac{LK}{N} \mathbf {C} \Vert \mathbf {W} \Vert _2^2\sigma _h^2\sigma _\mathbf {P}^2 \end{aligned}$$
$$\begin{aligned} \sigma _{\mathcal {H}_1}^2&=E[\lbrace t(\mathbf {Y} / \mathcal {H}_1) - E(t(\mathbf {Y} / \mathcal {H}_1))\rbrace ^2] \\&=E[\lbrace \mathbf {Y}^T \mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {P} - \alpha (\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P})^T (\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P}) \rbrace ^2] \\&=E[\lbrace (\mathbf {Y} - \alpha \mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P})^T (\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P}) \rbrace ^2] \\&=E[\lbrace (\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta })^T (\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P}) \rbrace ^2] ~[from ~Eq.~4] \\&=E[\lbrace (\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta })^T (\mathbf {W}\varvec{\mathbf {H}\Theta } \mathbf {P}) \rbrace ^T \lbrace (\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta })^T (\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P}) \rbrace ] \\&=E[(\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P})^T (\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta })(\mathbf {W}\mathbf {H}\varvec{\Theta }\mathbf {x} + \varvec{\eta })^T (\mathbf {W}\mathbf {H}\varvec{\Theta } \mathbf {P})] \\&=\frac{LK}{N} \mathbf {C} \Vert \mathbf {W} \Vert _2^2\sigma _h^2\sigma _\mathbf {P}^2 \end{aligned}$$

Appendix B

1.1 Proof of \(E[\Vert \varvec{\Theta } \mathbf {P} \Vert _2^2]=\frac{LK}{N}\sigma _\mathbf {P}^2\)

Let \(\varvec{\Theta }\) be taken as \(\varvec{\Theta }=[\varvec{\phi }^1 \vdots \varvec{\phi }^2 \vdots \ldots \vdots \varvec{\phi }^L]^T\) and each \(\varvec{\phi }^i \in \mathcal {R}^{K\times N}\), thus the matrix \(\varvec{\Theta } \in \mathcal {R}^{LK\times N}\). The watermark \(\mathbf {P} \in \mathcal {R}^N\), thus the product \(\varvec{\Theta }\mathbf {P}\) is a vector in \(\mathcal {R}^{LK}\). Since each \(\varvec{\phi }^i \in \mathcal {N}(0,1/N)\), thus

$$\begin{aligned} E[\Vert \varvec{\Theta }\mathbf {P} \Vert _2^2]=&E[\sum _{i=1}^{LK} \left( \varvec{\Theta } \mathbf {P} \right) ^2] \\ =&\sum _{i=1}^{LK} E[\left( \varvec{\Theta } \mathbf {P} \right) ^2] \\ =&(LK) E[<\varvec{\Theta } \mathbf {P}, \varvec{\Theta } \mathbf {P}>] \\ =&(LK)\sigma _\mathbf {P}^2 E[\varvec{\Theta }^T \varvec{\Theta }] \\&[\because E[\mathbf {P}^T \mathbf {P}]=\sigma _\mathbf {P}^2] \end{aligned}$$

Here,

$$\begin{aligned} \varvec{\Theta }^T \varvec{\Theta }&=[(\varvec{\phi }^1)^T \vdots (\varvec{\phi }^2)^T \vdots \ldots \vdots (\varvec{\phi }^L)^T] \begin{bmatrix} \varvec{\phi }^1 \\ \ldots \\ \varvec{\phi }^2 \\ \ldots \\ \vdots \\ \ldots \\ \varvec{\phi }^L \end{bmatrix} \\&=\begin{bmatrix} (\varvec{\phi }^1)^T \varvec{\phi }^1 \ldots (\varvec{\phi }^1)^T \varvec{\phi }^L \\ \vdots \\ (\varvec{\phi }^L)^T \varvec{\phi }^1 \ldots (\varvec{\phi }^L)^T \varvec{\phi }^L \end{bmatrix} \\ \text {Now,}~~ E[(\varvec{\phi }^i)^T \varvec{\phi }^j ]&= {\left\{ \begin{array}{ll} 0~for~i \ne j \\ 1/N~for~i=j \end{array}\right. } \\ \therefore E[\varvec{\Theta }^T \varvec{\Theta }]&= \begin{bmatrix} 1/N&\\&\ddots&\\&1/N \end{bmatrix}=\frac{1}{N}\mathbf {I}_N \end{aligned}$$

Hence,

$$\begin{aligned} E[\Vert \varvec{\Theta }\mathbf {P} \Vert _2^2]&=\left( LK/N\right) \sigma _\mathbf {P}^2 \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bose, A., Maity, S.P. On robust watermark detection for optimum multichannel compressive transmission. Microsyst Technol 28, 485–497 (2022). https://doi.org/10.1007/s00542-018-3840-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3840-3

Navigation