Skip to main content

Advertisement

Log in

Minimum energy solution for ultra-low power applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper examines device sizing of CMOS inverter circuit at 22-nm technology node using predictive technology model in deep subthreshold region. Channel length (L) of the device is resolved to obtain optimized threshold voltage @ supply voltage of 150 mV. Aspect ratio of Inverter logic gate is determined for the same supply voltage. Symmetrical transient response analysis is performed. It is found that the inverter logic gate is symmetric when aspect ratio (β) is equal to 3.71. Minimum propagation delay is found and observed that high performance circuit design is achievable for higher β ratios. At L = 66 nm, optimum threshold voltage is obtained. Minimum energy point is also obtained at β ratio of 3.71 at 122 mV.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Baldi L, Bez Roberto (2005) The scaling challenges of CMOS and the impact on high-density non-volatile memories. Microsyst Technol. https://doi.org/10.1007/s00542-006-0157-4

    Google Scholar 

  • Calhoun BH, Wang A, Chandrakasan A (2004) Characterizing and modeling minimum energy operation for subthreshold circuits. In: Proceedings of the 2004 international symposium low power electronics and design, ISLPED ‘04, pp 90–99

  • Calhoun BH, Wang A, Chandrakasan A (2005) Modeling and sizing for minimum energy operation in subthreshold circuits. IEEE J Solid State Circuits 40(9):1778–1786

    Article  Google Scholar 

  • Cook BS, Le T, Palacios S, Traille A, Tentzeris MM (2013) Only skin deep: inkjet-printed zero-power sensors for large-scale RFID-integrated smart skins. IEEE Microwave Mag 14(3):103–114

    Article  Google Scholar 

  • Corless R et al (1996) On the Lambert W function. Adv Comput Math 5:329–359

    Article  MathSciNet  MATH  Google Scholar 

  • Da Silva AF, Goncalves AF, de Almeida Ferreira LA, Araujo FMM, Mendes PM, Correia JH (2011) A smart skin PVC foil based on FBG sensors for monitoring strain and temperature. IEEE Trans Ind Electron 58(7):2728–2735

    Article  Google Scholar 

  • Dong X (2012) A bionic artificial heart blood pump driven by permanent magnet located outside human body. IEEE Trans Appl Supercond 22(3):4401304–4401304

    Article  Google Scholar 

  • Gupta SK, Raychowdhury A, Roy K (2010) Digital computation in subthreshold region for ultralow-power operation: a device–circuit–architecture codesign perspective. Proc IEEE 98(2):160–190

    Article  Google Scholar 

  • Karnik T, Ye Y, Tschanz J, Wei L, Burns S, Govindarajulu V, De V, Borkar S (2002) Total power optimization by simultaneous dual-Vt allocation and device sizing in high performance microprocessors. In: Design automation conference, pp 486–491

  • Keane J et al (2006) Subthreshold logical effort: a systematic framework for optimal subthreshold device sizing. In: Design automation 43rd ACM/IEEE conference, pp 425–428

  • Kwong J, Chandrakasan AP (2006) Variation-driven device sizing for minimum energy sub-threshold circuits. In: Proceedings of the 2006 international symposium on low power electronics and design, ISLPED’06, pp 8–13

  • Markovic D, Wang CC, Alarcon LP, Liu T-T, Rabaey JM (2010) Ultralow-power design in near-threshold region. Proc IEEE 98(2):237–252

    Article  Google Scholar 

  • Markovic M, Rapin M, Correvon M, Perriard Y (2013) Design and optimization of a blood pump for a wearable artificial kidney device. IEEE Trans Ind Appl 49(5):2053–2060

    Article  Google Scholar 

  • Predictive Technology Model (2015) Nanoscale Integration and Modeling (NIMO) Group, Arizona State University (ASU) (online). http://ptm.asu.edu/. Accessed 18 Aug 2015

  • Rabey JM, Chandrakasan A, Nikolic B (2003) Digital integrated circuits—a design perspective, 2nd edn. Pearson Education, ISBN: 81-317-0914-0

  • Ramadass YK, Chandrakasan AP (2008) Minimum energy tracking loop with embedded DC–DC converter enabling ultra-low-voltage operation down to 250 mV in 65 nm CMOS. IEEE J Solid State Circuits 43(1):256–265

    Article  Google Scholar 

  • Semiconductor Industry Association (SIA) International Technology Roadmap for semiconductors (2013) Edition (online). http://www.itrs.net/ITRS%2019992014%20Mtgs,%20Presentations%20&%20Links/2013ITRS/Summary2013.htm. Accessed 24 Sept 2015

  • Spencer WJ (1978) Biomedical: for diabetics: an electronic pancreas: a bionic device implanted below the human diaphragm will deliver insulin into the peritoneum and be inductively programmable. IEEE Spectr 15(6):38–42

    Article  Google Scholar 

  • Vaddi R, Dasgupta S, Agarwal RP (2010) Device and circuit co-design robustness studies in the subthreshold logic for ultralow-power applications for 32 nm CMOS. IEEE Trans Electron Devices 57(3):654–664

    Article  Google Scholar 

  • Veltink PH, De Rossi D (2010) Wearable technology for biomechanics: e-textile or micromechanical sensors? [Conversations in BME]. IEEE Eng Med Biol Mag 29(3):37–43

    Article  Google Scholar 

  • Wang A et al (2004) A 180 mV FFT processor using subthreshold circuit techniques. In: IEEE international solid-state circuits conference (ISSCC), pp 292–293

  • Wang A et al (2012) Out of Thin Air: Energy Scavenging and the Path to Ultralow-Voltage Operation. IEEE Solid-State Circuits Mag 4(2):38–42

    Article  Google Scholar 

  • Wang A, Calhoun BH, Chandrakasan A (2006) Subthreshold design for ultralow power systems. Springer, ISBN 978-0-387-34501-7

  • Weste NHE, Harris D, Banerjee A (2005) Principles of CMOS VLSI design: a circuit and systems perspective, 3rd edn. Pearson Education, ISBN: 0321149017/978-0321149015

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Guduri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guduri, M., Dokania, V., Verma, R. et al. Minimum energy solution for ultra-low power applications. Microsyst Technol 25, 1823–1831 (2019). https://doi.org/10.1007/s00542-018-3785-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3785-6

Navigation