Skip to main content
Log in

Material selection methodology for radio frequency (RF) microelectromechanical (MEMS) capacitive shunt switch

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper describes the process of selecting the most optimum Radio Frequency Micro- electro- mechanical-systems (RF-MEMS) switch design using Ashby’s methodology. The switches are compared on the basis of parameters like actuation voltage, insertion loss, isolation and switching time using material selection charts. The chart shows that a low-voltage metal-to-metal contact shunt capacitive RF-MEMS having a bridge structure with Si-GaAs substrate, electroplated gold contacts and silicon nitride dielectric layer, is the most optimum of all the switches considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashby MF (1999) Materials selection in mechanical design, 2nd edn. Butterworth-Heinemann Oxford, Waltham

    Google Scholar 

  • Balaraman D, Bhattacharya SK, Ayazi F, Papapolymerou J (2002) Low-cost low actuation voltage copper RF-MEMS switches. In: IEEE Microwave Theory Technical Symposium 2:1225–1228

    Google Scholar 

  • Chan R, Lesnick R, Becher D, Milton F (2003) Low-actuation voltage RF MEMS shunt switch with cold switching lifetime of seven billion cycles. J Microelectromech Syst 12:713–719

    Article  Google Scholar 

  • Chu CH, Shih WP, Chung SY, Tsai HC, Shing TK, Chang PZ (2007) A low actuation voltage electrostatic actuator for RF MEMS switch applications. J Micromech Microeng 17:1649–1656

    Article  Google Scholar 

  • Goldsmith C, Lin T-H, Powers B, Wu W-R, Norvell B (1995) Micromechanical membrane switches for microwave applications. IEEE Microw Theory Tech Symp 1:91–94

    Google Scholar 

  • Goldsmith C, Randall J, Eshelman S, Lin TH, Denniston D, Clhen S, Norvell B (1996) Characteristics of micromachined switches at microwave frequencies. In: Microwave symposium digest, IEEE MTT-S International, p 1141–1144

  • Goldsmith C, Yao ZJ, Eshelman S, Denniston D (1998) Performance of low-loss RF MEMS capacitive switches. IEEE Microw Guided Wave Letters 8:269–271

    Article  Google Scholar 

  • Hyman D, Schmitz A, Warneke B, Hsu TY (1999) GaAs-compatible surface-micromachined RF MEMS switches. Electron Lett 35:224–226

    Article  Google Scholar 

  • Jaafar H, Fong LN, Yunus NAM (2011) Design and simulation of high performance RF MEMS series switch. In: Micro and nanoelectronics (RSM), IEEE Regional Symposium. p 349–353

  • Jensen BD, Wan Z, Chow L, Saitou K, Kurabayashi K, Volakis JL (2003) Integrated electrothermal modeling of RF-MEMS switches for improved power handling capability. In: IEEE topical conference on wireless communication technology. p 10–11

  • Leng G, Rebeiz GM (2001) DC-26 GHz MEMS series-shunt absorptive. In: Microwave symposium digest, IEEE MTT-S International, Vol 1. p 325–328

  • Liu AQ (2010) RF MEMS switches and integrated switching circuits. Springer, New York

    Book  Google Scholar 

  • Muldavin JB, Rebeiz GM (1999) 30 GHz tuned MEMS switches. In: Microwave symposium digest, IEEE MTT-S International. p 1511–1514

  • Muldavin JB, Rebeiz GM (2000) Novel series and shunt MEMS switch geometries for X-Band applications European microwave conference, Paris

  • Muldavin JB, Rebeiz GM (2001) Nonlinear electro-mechanical modelling of MEMS switches. In: IEEE International microwave symposium, p 2119–2122

  • Pacheco SP, Katehi LPB, Nguyen CT-C (2000) Design of low actuation voltage RF MEMS switch. In: Microwave symposium digest, IEEE MTT-S International, p 165–168

  • Rebeiz GM (2003) RF MEMS: theory, design, and technology, 3rd edn. Wiley, Hoboken

    Book  Google Scholar 

  • Riz JB, Muldavin JB, Tan GL, Rebeiz GM (2000) Design of X-Band MEMS microstrip, microwave conference, 30th European, p 1–4

  • Sharma AK, Gupta N (2014) Investigation of actuation voltage for non-uniform serpentine flexure design of RF-MEMS switch. Microsyst Technol 20:413–418

    Article  Google Scholar 

  • Sharma AK, Gupta N (2015) An improved design of MEMS switch for radio frequency applications. Int J Appl Electromagnet Mech 47:11–19

    Article  Google Scholar 

  • Shen SC, Feng M (1999) Low actuation voltage RF MEMS switches with signal frequencies from 0.25 GHz to 40 GHz. In: IEEE International Electron Device Meeting

  • Stefanini R, Chatras M, Blondy P, Rebeiz GM (2011) Miniature RF MEMS metal-contact switches for DC-20 GHz applications. In: microwave symposium digest (MTT)

  • Tan GL, Rebeiz GM (2001) DC-26 GHz MEMS series-shunt absorptive switches. IEEE Microw Theory Tech Symp 1:325–328

    Google Scholar 

  • Ulm M, Walter T, Mueller-Fiedler R, Voigtlaender K (2000) K-band capacitive MEMS-switches, silicon monolithic integrated circuits in RF systems, digest of papers topical meeting. p 119–122

  • Varadan VK, Vinoy KJ, Jose KA (2002) RF MEMS and their applications. Wiley, Hoboken

    Book  Google Scholar 

  • Yao JJ (2000) Topical review—RF MEMS from a device perspective. J Micromech Microeng 10:9–38

    Article  Google Scholar 

  • Yao JJ, Chang MF (1995) A surface micromachined miniature switch for telecommunications applications with signal frequencies from DC up to 4 GHz, 8th International conference on solid-state sensors and actuators, and eurosensors I X. Stockholm, p 25–29

  • Yao ZJ, Chen S, Eshelman S, Denniston D, Goldsmith C (1999) Micromachined low-loss microwave switches. J Microelectromech Syst 8:129–134

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Navneet Gupta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, N., Ashwin, R. Material selection methodology for radio frequency (RF) microelectromechanical (MEMS) capacitive shunt switch. Microsyst Technol 26, 3121–3128 (2020). https://doi.org/10.1007/s00542-018-3761-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-018-3761-1

Navigation