Skip to main content
Log in

A low loss and power efficient micro-electro-thermally actuated RF MEMS switch for low power and low loss applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

A novel laterally and micro-electro-thermally actuated RF MEMS switch is presented in this paper. Despite many RF MEMS switches requiring continuous actuation voltage to hold the switch at ON-state, the proposed switch remains ON without any DC power. The mechanical design of the switch is in such a way that, the contact force of the switch is in mN range with zero DC power consumption. The switch is modeled and its operation is comprehensively analyzed. The fabrication process is completely compatible with standard MetalMUMPs process. The switch requires actuation voltages of 0.5 and 0.9 V for U-shaped and V-shaped actuators, respectively. The switch is normally OFF with isolation of − 20 dB up to 100 GHz. The insertion loss of the switch at ON-state is better than − 0.1 dB up to 40 GHz and the return loss is below − 10 dB up to 100 GHz. The power consumption of the switch is confined to the transition time of the switch between OFF and ON states. Based on analytical and numerical simulations, the contact resistance of the switch is 0.028 Ω. The proposed switch in this paper is dedicated for applications in mobile front-ends especially antenna switch networks where the signal loss and power consumption are the main constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Atashzaban E, Mirzajani H, Nasiri M, Sangsefidi M (2013a) A large stroke MEMS-based linear motor for fourier transform spectrometer applications. Sens Transducers 151:47

    Google Scholar 

  • Atashzaban E, Nasiri M, Mirzajani H, Demaghsi H, Ghavifekr HB (2013b) Design and simulation of a MEMS-based large traveling linear motor for near infrared fourier transform spectrometer. Sens Transducers 151:41

    Google Scholar 

  • Bakri-Kassem M, Mansour RR (2015) High power latching RF MEMS switches. IEEE Trans Microw Theory Tech 63:222–232

    Article  Google Scholar 

  • Barzegar S, Mirzajani H, Ghavifekr HB (2015) A new linearly tunable RF MEMS varactor with latching mechanism for low voltage and low power reconfigurable networks. Wireless Pers Commun 83:2249–2265

    Article  Google Scholar 

  • Bian H, Shan C, Chen F, Yang Q, Li Y, Li Q (2017) Miniaturized 3-D solenoid-type micro-heaters in coordination with 3-D microfluidics. J Microelectromech Syst 26:588–592

    Google Scholar 

  • Bonthu M, Sharma AK (2017) An investigation of dielectric material selection of RF-MEMS switches using Ashby’s methodology for RF applications Microsyst Technol. https://doi.org/10.1007/s00542-017-3539-x

    Google Scholar 

  • Chan KY, Daneshmand M, Mansour RR, Ramer R (2009) Scalable RF MEMS switch matrices: methodology and design. IEEE Trans Microw Theory Tech 57:1612–1621

    Article  Google Scholar 

  • Cheng Y, Zhang W, Tang J, Sun D, Chen W (2015) A MEMS piezoelectric solid disk gyroscope with improved sensitivity. Microsyst Technol 21(6):1371–1377

    Article  Google Scholar 

  • Cowen A et al (2002) MetalMUMPs design handbook MEMSCAP revision 1

  • Daneshmand M, Mansour R (2011) RF MEMS satellite switch matrices. IEEE Microw Mag 12:92–109

    Article  Google Scholar 

  • Daneshmand M, Fouladi S, Mansour RR, Lisi M, Stajcer T (2009) Thermally actuated latching RF MEMS switch and its characteristics. IEEE Trans Microw Theory Tech 57:3229–3238

    Article  Google Scholar 

  • Demaghsi H, Mirzajani H, Atashzaban E, Ghavifekr HB (2012) Design and simulation of a microgripper with the ability of releasing nano particles by vibrating end-effectors. Sens Transducers 144(9):131

    Google Scholar 

  • Demaghsi H, Mirzajani H, Ghavifekr HB (2014a) A novel electrostatic based microgripper (cellgripper) integrated with contact sensor and equipped with vibrating system to release particles actively. Microsyst Technol 20(12):2191–2202

    Article  Google Scholar 

  • Demaghsi H, Mirzajani H, Ghavifekr HB (2014b) Design and simulation of a novel metallic microgripper using vibration to release nano objects actively. Microsyst Technol 20(1):65–72

    Article  Google Scholar 

  • Demirel K, Yazgan E, Demir Ş, Akın T (2017) A folded leg Ka-band RF MEMS shunt switch with amorphous silicon (a-Si) sacrificial layer. Microsyst Technol 23:1191–1200

    Article  Google Scholar 

  • Deng P, Wang N, Cai F et al (2017) A high-force and high isolation metal-contact RF MEMS switch. Microsyst Technol 23:4699. https://doi.org/10.1007/s00542-017-3302-3

    Article  Google Scholar 

  • Driesen M, Ceyssens F, Decoster J, Puers R (2010) Nickel-plated thermal switch with electrostatic latch. Sens Actuators A 164:148–153

    Article  Google Scholar 

  • Elms D (1970) Linear elastic analysis. Batsford, London

  • Fritz T, Cho H, Hemker K, Mokwa W, Schnakenberg U (2002) Characterization of electroplated nickel. Microsyst Technol 9:87–91

    Article  Google Scholar 

  • Hassanpour PA, Nieva PM, Khajepour A (2012) A passive mechanism for thermal stress regulation in micro-machined beam-type structures. Microsyst Technol 18:543–556

    Article  Google Scholar 

  • He X, Lv Z, Liu B, Li Z (2012) High-isolation lateral RF MEMS capacitive switch based on HfO 2 dielectric for high frequency applications. Sens Actuators A 188:342–348

    Article  Google Scholar 

  • Huang Q-A, Lee NKS (1999) Analysis and design of polysilicon thermal flexure actuator. J Micromech Microeng 9:64

    Article  Google Scholar 

  • Ilkhechi AK, Mirzajani H, Aghdam EN, Ghavifekr HB (2016a) A new electrothermally actuated 3-state high isolation and low power RF MEMS switch with latching mechanism. In: IEEE 2016 24th Iranian conference on electrical engineering (ICEE), pp 1634–1639. https://doi.org/10.1109/IranianCEE.2016.7585783

  • Ilkhechi AK, Mirzajani H, Aghdam EN, Ghavifekr HB (2016b) A novel SPDT rotary RF MEMS switch for low loss and power efficient signal routing. IETE J Res 62(1):68–80

    Google Scholar 

  • Ilkhechi AK, Mirzajani H, Aghdam EN et al (2017) A new electrostatically actuated rotary three-state DC-contact RF MEMS switch for antenna switch applications. Microsyst Technol 23:231. https://doi.org/10.1007/s00542-015-2714-1

    Article  Google Scholar 

  • Ivanoff CS et al (2016) AC electrokinetic drug delivery in dentistry using an interdigitated electrode assembly powered by inductive coupling. Biomed Microdevice 18:84

    Article  Google Scholar 

  • Jain V, Raj TP, Deshmukh R, Patrikar R (2017) Design, fabrication and characterization of low cost printed circuit board based EWOD device for digital microfluidics applications. Microsyst Technol 23:389–397

    Article  Google Scholar 

  • Jayanthi VSPKSA, Das AB, Saxena U (2016) Recent advances in biosensor development for the detection of cancer biomarkers. Biosens Bioelectron 91:15–23. https://doi.org/10.1016/j.bios.2016.12.014

    Article  Google Scholar 

  • Joshitha C, Sreeja B, Princy SS, Radha S (2017) Fabrication and investigation of low actuation voltage curved beam bistable MEMS switch. Microsyst Technol 23:4553–4566

    Article  Google Scholar 

  • Kahmen G, Schumacher H (2017) Interactive design of MEMS varactors with high accuracy and application in an ultralow noise MEMS-based RF VCO. IEEE Trans Microw Theory Tech 65(10):3578–3584

    Article  Google Scholar 

  • Kumar N, Singh YK (2017) RF-MEMS-based bandpass-to-bandstop switchable single-and dual-band filters with variable FBW and reconfigurable selectivity. IEEE Trans Microw Theory Tech 65(10):3824–3837. https://doi.org/10.1109/TMTT.2017.2696004

    Article  Google Scholar 

  • Lakshmipriya T, Gopinath SCB, Hashim U (2017) Influenza viral detection on microfluidic delivery assisted biosensors. Microsyst Technol. https://doi.org/10.1007/s00542-017-3555-x

    Google Scholar 

  • Li H, Chen J, Zhang J, Zhang N, Wang L, Zheng J (2017a) Freestanding electrostatic scratch drive microstructures using lamination of photosensitive films for microfluidics and microrobotics applications. Microsyst Technol 1–6

  • Li M, Zhao J, You Z, Zhao G (2017b) Design and experimental validation of a restoring force enhanced RF MEMS capacitive switch with stiction-recovery electrodes. Microsyst Technol 23:3091–3096

    Article  Google Scholar 

  • Lin L, Chiao M (1996) Electrothermal responses of lineshape microstructures. Sens Actuators A 55:35–41

    Article  Google Scholar 

  • Liu Y, Bey Y, Liu X (2017) High-power high-isolation RF-MEMS switches with enhanced hot-switching reliability using a shunt protection technique. IEEE Trans Microw Theory Tech 65(9):3188–3199. https://doi.org/10.1109/TMTT.2017.2687427

    Article  Google Scholar 

  • Lu Q, Bai J, Wang K, He S (2017) Design, optimization, and realization of a high-performance MOEMS accelerometer from a double-device-layer SOI wafer. J Microelectromech Syst 26(4):859–869. https://doi.org/10.1109/JMEMS.2017.2693341

    Article  Google Scholar 

  • Lucibello A, Marcelli R, Di Paola E et al (2017) Fabrication and test of RF MEMS in LTCC technology. Microsyst Technol. https://doi.org/10.1007/s00542-017-3419-4

    Google Scholar 

  • Maloney JM (2001) Fabrication and thermal actuation of 3-D micro electro mechanical systems Master’s thesis. University of Maryland, College Park

    Google Scholar 

  • Mastrangeli M, Nannini A, Paci D, Pieri F (2006) Equivalent circuit for RF flexural free–free MEMS resonators. J Comput Electron 5:205–210

    Article  Google Scholar 

  • Matsuda K (2011) Equivalent-circuit model for electrostatic micro-torsion mirror. J Comput Electron 10:136–140

    Article  Google Scholar 

  • Mirzajani H, Pourmand A, Aghdam EN, Ghavifekr HB (2014) Frequency agile MEMS patch antenna for reconfigurable RF front-ends. In: IEEE 2014 22nd Iranian conference on electrical engineering (ICEE), pp 393–398. https://doi.org/10.1109/IranianCEE.2014.6999571

  • Mirzajani H, Ghavifekr HB, Aghdam EN, Demaghsi H, Vafaie RH (2015) Enhancement of mechanical resonant modes by miniaturization of frequency tunable MEMS-enabled microstrip patch antenna. Microsyst Technol 21:773–783

    Article  Google Scholar 

  • Mirzajani H, Cheng C, Wu J, Ivanoff CS, Aghdam EN, Ghavifekr HB (2016) Design and characterization of a passive, disposable wireless AC-electroosmotic lab-on-a-film for particle and fluid manipulation. Sens Actuators B Chem 235:330–342

    Article  Google Scholar 

  • Mirzajani H, Aghdam EN, Ghavifekr HB, Jafarpour A (2017a) 3-state, high contact and release force RF MEMS switch designed based on MetalMUMPs process. In: IEEE 2017 Iranian conference on electrical engineering (ICEE), pp 318–323. https://doi.org/10.1109/IranianCEE.2017.7985463

  • Mirzajani H, Cheng C, Wu J, Chen J, Eda S, Aghdam EN, Ghavifekr HB (2017b) A highly sensitive and specific capacitive aptasensor for rapid and label-free trace analysis of Bisphenol A (BPA) in canned foods. Biosens Bioelectron 89:1059–1067

    Article  Google Scholar 

  • Mirzajani H, Ilkhechi AK, Zolfaghari P, Azadbakht M, Aghdam EN, Ghavifekr HB (2017c) Power efficient, low loss and ultra-high isolation RF MEMS switch dedicated for antenna switch applications. Microelectron J 69:64–72

    Article  Google Scholar 

  • Molaei S, Ganji BA (2017) Design and simulation of a novel RF MEMS shunt capacitive switch with low actuation voltage and high isolation. Microsyst Technol 23:1907–1912

    Article  Google Scholar 

  • Navaratna R (1965) Application of matrix displacement method to linear elastic analysis of shells of revolution. AIAA J 3(11):2138–2145. https://doi.org/10.2514/3.3326

    Article  Google Scholar 

  • Muldavin J, Bozler C, Wyatt P (2012) Stiction in RFMEMS capacitive switches. In: 2012 IEEE MTT-S international microwave symposium digest (MTT), pp 1–3

  • Nouet P, Michel B (2017) Special issue on design, test, integration and packaging of MEMS and MOEMS (DTIP 2015), held in Montpellier, France, April 27–30, 2015. Springer

  • Okyay AK et al (2017) Using nanogap in label-free impedance based electrical biosensors to overcome electrical double layer effect. Microsyst Technol 23:889–897

    Article  Google Scholar 

  • Patel CD, Rebeiz GM (2010) An RF-MEMS switch with mN contact forces. In: IEEE 2010 microwave symposium digest (MTT), MTT-S International, pp 1242–1245

  • Patel CD, Rebeiz GM (2012) A high-reliability high-linearity high-power RF MEMS metal-contact switch for DC-40-GHz applications. IEEE Trans Microw Theory Tech 60:3096–3112

    Article  Google Scholar 

  • Phan HP, Nguyen MN, Nguyen NV, Chu DT (2017) Analytical modeling of a silicon-polymer electrothermal microactuator. Microsyst Technol 23:101–111

    Article  Google Scholar 

  • Pirmoradi E, Mirzajani H, Ghavifekr HB (2015) Design and simulation of a novel electro-thermally actuated lateral RF MEMS latching switch for low power applications. Microsyst Technol 21:465–475

    Article  Google Scholar 

  • Proie RM, Ivanov T, Pulskamp JS, Polcawich RG (2012) A compact, low loss piezoelectric RF MEMS relay with sub 100-ns switching times. In: IEEE microwave symposium digest (MTT), MTT-S International, pp 1–3

  • Rebeiz GM (2004) RF MEMS: theory, design, and technology. Wiley, New York

    Google Scholar 

  • Rebeiz GM, Entesari K, Reines IC, Park S-J, El-Tanani MA, Grichener A, Brown AR (2009) Tuning into RF MEMS. IEEE Microw Mag 10:55–72

    Article  Google Scholar 

  • Rebeiz GM, Patel CD, Han SK, Ko C-H, Ho KM (2013) The search for a reliable MEMS switch. IEEE Microw Mag 14:57–67

    Article  Google Scholar 

  • Shan T, Qi X, Cui L, Zhou X (2017) Thermal behavior modeling and characteristics analysis of electrothermal microactuators. Microsyst Technol 23:2629–2640

    Article  Google Scholar 

  • Shivhare P, Uma G, Umapathy M (2016) Design enhancement of a chevron electrothermally actuated microgripper for improved gripping performance. Microsyst Technol 22:2623–2631

    Article  Google Scholar 

  • Somà A, Iamoni S, Voicu R et al (2017) Design and experimental testing of an electro-thermal microgripper for cell manipulation. Microsyst Technol. https://doi.org/10.1007/s00542-017-3460-3

    Google Scholar 

  • Song Y-H, Gong S (2017) Wideband spurious-free lithium niobate RF-MEMS filters. J Microelectromech Syst 26(4):820–828. https://doi.org/10.1109/JMEMS.2017.2671445

    Article  Google Scholar 

  • Sterner M, Roxhed N, Stemme G, Oberhammer J (2011) Electrochemically assisted maskless selective removal of metal layers for three-dimensional micromachined SOI RF MEMS transmission lines and devices. J Microelectromech Syst 20:899–908

    Article  Google Scholar 

  • Takalkar S, Baryeh K, Liu G (2017) Fluorescent carbon nanoparticle-based lateral flow biosensor for ultrasensitive detection of DNA. Biosens Bioelectron 98:147–154

    Article  Google Scholar 

  • Tingkai Z, Chaoyang X, Ling Z, Wei W (2015) Study on a vibratory tri-axis MEMS gyroscope with single drive and multiple axes angular rate sense. Microsyst Technol 21(10):2145–2154

    Article  Google Scholar 

  • Trigona C, Andò B, Baglio S (2016) Fabrication and characterization of an MOEMS gyroscope based on photonic bandgap materials. IEEE Trans Instrum Meas 65:2840–2852

    Article  Google Scholar 

  • Vafaie RH, Mahdipour M, Mirzajani H, Ghavifekr HB (2013) Numerical simulation of mixing process in tortuous microchannel. Sens Transducers 151(4):30

    Google Scholar 

  • Wang Y-H, Huang K-J, Wu X (2017) Recent advances in transition-metal dichalcogenides based electrochemical biosensors: a review. Biosens Bioelectron 97:305–316. https://doi.org/10.1016/j.bios.2017.06.011

    Article  Google Scholar 

  • Wu J, Quinn V, Bernstein GH (2005) An inductive link with integrated receiving coil—coupling coefficient and link efficiency. J Comput Electron 4:221–230

    Article  Google Scholar 

  • Xiang H, Shi Z (2009) Static analysis for functionally graded piezoelectric actuators or sensors under a combined electro-thermal load. Eur J Mech A Solids 28:338–346

    Article  MATH  Google Scholar 

  • Xu Y, Liu S, Wang S (2017) Miniaturized two-dimensional optical scanner based on planar waveguide and flexible printed circuit beam deflectors. IEEE Photonics J 9:1–11

    Google Scholar 

  • Yan D, Khajepour A, Mansour R (2003) Modeling of two-hot-arm horizontal thermal actuator. J Micromech Microeng 13:312

    Article  Google Scholar 

  • Yıldırım E (2017) Analysis and testing of a contraction-and-expansion micromixer for micromilled microfluidics Microsyst Technol 23:4797. https://doi.org/10.1007/s00542-017-3291-2

    Article  Google Scholar 

  • Zhang R, Chu J, Wang H, Chen Z (2013) A multipurpose electrothermal microgripper for biological micro-manipulation. Microsyst Technol 19:89–97

    Article  Google Scholar 

  • Zhang Z, Yu Y, Liu X, Zhang X (2017) Dynamic modelling and analysis of V-and Z-shaped electrothermal microactuators. Microsyst Technol 23:3775–3789

    Article  Google Scholar 

  • Zhu Y-Q, Han L, Wang L-F, Tang J-Y, Huang Q-A (2013) A novel three-state RF MEMS switch for ultrabroadband (DC-40 GHz) applications. IEEE Electron Device Lett 34:1062–1064

    Article  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to Dr. Habib Badri Ghavifekr for his fruitful discussions and technical assistance on this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Parviz Zolfaghari.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zolfaghari, P., Arzhang, V. & Zolfaghari, M. A low loss and power efficient micro-electro-thermally actuated RF MEMS switch for low power and low loss applications. Microsyst Technol 24, 3019–3032 (2018). https://doi.org/10.1007/s00542-017-3684-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3684-2

Navigation