Microsystem Technologies

, Volume 24, Issue 6, pp 2673–2682 | Cite as

Inkjet printing of multi-layered, via-free conductive coils for inductive sensing applications

  • Matic KrivecEmail author
  • Martin Lenzhofer
  • Thomas Moldaschl
  • Jaka Pribošek
  • Anže Abram
  • Michael Ortner
Technical Paper


A new fabrication technique based on the combined printing of Ag-nanoparticles and dielectric material was developed. The processing, composed of inkjet printing and intense pulsed light sintering/curing, enables a fast, controllable and highly-adaptable structuring of 3D conductor/insulator structures on various types of substrates including ones with low-temperature stability and flexible ones. With this process the classical vias of the multi-layer structure are replaced by a direct connection between the layers achieved by an absence of insulation material at designated areas providing a fast and efficient method for multilayer prototyping. For testing and demonstration a multilayer planar coil structure was fabricated with an overall thickness of 30 µm on the PET substrate. The electromagnetic properties of the structures were successfully tested and verified by comparing several experiments to finite element method simulations. The theoretical simulations show an excellent match with experimental measurements of several structures thus giving confidence in the reliability of the proposed process.



This project has been supported by the COMET K1 center ASSIC Austrian Smart Systems Integration Research Center. The COMET—Competence Centers for Excellent Technologies—Program is supported by BMVIT, BMWFW and the federal provinces of Carinthia and Styria. The authors want to additionally thank Marcelo Ribeiro for his help with the performed experiments.


  1. ANSYS Academic Research (2016) Maxwell Release 18.0Google Scholar
  2. Blitz J (2012) Electrical and magnetic methods of non-destructive testing. Springer Science + Business Media, New YorkGoogle Scholar
  3. Burke S, Ditchburn R, Theodoulidis T (2014) Impedance of a curved circular spiral coil around a conductive cylinder. NDT E Int 64:1–6. CrossRefGoogle Scholar
  4. Cook BS, Cooper JR, Tentzeris MM (2013a) Multi-layer RF capacitors on flexible substrates utilizing inkjet-printed dielectric polymers. IEEE Microw Wirel Compon Lett 23:1309–1531. CrossRefGoogle Scholar
  5. Cook BS, Tehrani B, Cooper JR, Tentzeris MM (2013b) Multilayer inkjet printing of millimeter-wave proximity-fed patch arrays on flexible substrates. IEEE Antennas Wirel Propag Lett 12:1351–1354. CrossRefGoogle Scholar
  6. Cook BS, Mariotti C, Cooper JR, Revier D, Tehrani BK, Aluigi L, Roselli L, Tentzeris MM (2014) Inkjet-printed, vertically-integrated, high-performance inductors and transformers on flexible LCP substrate. In: IEEE MTT-S international microwave symposium (IMS2014), pp 1–4.
  7. Darrer BJ, Watson JC, Bartlett PA, Renzoni F (2015) Electromagnetic imaging through thick metallic enclosures. AIP Adv 5:87143. CrossRefGoogle Scholar
  8. Faller L, Mühlbacher-Karrer S, Zangl H (2016) Inkjet-printing rapid prototyping of a robust and flexible capacitive touch panel. IEEE Sens. Google Scholar
  9. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer Science + Business Media, New YorkCrossRefGoogle Scholar
  10. Hösel M, Krebs FC (2012) Large-scale roll-to-roll photonic sintering of flexo printed silver nanoparticle electrodes. J Mater Chem 22:15683–15688. CrossRefGoogle Scholar
  11. Jeranče N, Vasiljević D, Samardžić N, Stojanović G (2012) A compact inductive position sensor made by inkjet printing technology on a flexible substrate. Sensors 12:1288–1298. CrossRefGoogle Scholar
  12. Kang JS, Ryu J, Kim HS, Hahn HT (2011) Sintering of inkjet-printed silver nanoparticles at room temperature using intense pulsed light. J Electron Mater 40:2268–2277. CrossRefGoogle Scholar
  13. Kang JB, Lee CK, Oh JH (2012) All-inkjet-printed electrical components and circuit fabrication on a plastic substrate. Microelectron Eng 97:251–254. CrossRefGoogle Scholar
  14. Kim D, Lee SH, Jeong S, Moon J (2009) All-ink-jet printed flexible organic thin-film transistors on plastic substrates. Electrochem Solid State 12:H195–H197. CrossRefGoogle Scholar
  15. Korvink JG, Smith PJ, Shin D-Y (2012) Inkjet-based micromanufacturing. Wiley-VCH Verlag GmbH & Co. KGaA, WeinheimCrossRefGoogle Scholar
  16. Mühlbacher-Karrer S, Gaschler A, Zangl H (2015) Responsive fingers—capacitive sensing during object manipulation. IEEE/RSJ Int Conf. Google Scholar
  17. Otsu N (1979) A threshold selection method from gray-level histograms. IEEE Trans Syst Man Cybern 9:62–66. CrossRefGoogle Scholar
  18. Projekt Elektronik (2017) Datasheet Teslameter FM302 v0201 2016, Projekt Elektronik Datasheet AS Aktivsonden v0202 2017Google Scholar
  19. Sanchez-Romaguera V, Madec M-B, Yeates SG (2008) Inkjet printing of 3D metal–insulator–metal crossovers. React Funct Polym 68:1052–1058. CrossRefGoogle Scholar
  20. Serway RA (1998) Principles of physics. Saunders College Pub, LondonGoogle Scholar
  21. Shilyashki G, Pfützner H, Palkovits M, Hamberger P, Aigner M (2015) A tangential induction sensor for 3-D analyses of peripheral flux distributions in transformer cores. IEEE Trans Magn 51:1–6. Google Scholar
  22. Shoute G, Barlage D (2015) Fractal loop inductor. IEEE Trans Magn 51:1. CrossRefGoogle Scholar
  23. Son H, Lee K (2008) Distributed multipole models for design and control of PM actuators and sensors. IEEE/ASME Trans Mechatron 13:228–238. CrossRefGoogle Scholar
  24. Sophian A, Tian G, Taylor D, Rudlin J (2001) Electromagnetic and eddy current NDT: a review. Insight 43:302–306Google Scholar
  25. Vaezi M, Seitz H, Yang S (2013) A review on 3D micro-additive manufacturing technologies. Int J Adv Manuf Technol 67:1721–1754. CrossRefGoogle Scholar
  26. Wang L (2016) Stretchable Eddy-Current noncontact gap sensor based on spiral conductive polymer composite. IEEE/ASME Trans Mechatron 21:1072–1079. CrossRefGoogle Scholar
  27. Wünscher S, Abbel R, Perelaer J, Schubert US (2014) Progress of alternative sintering approaches of inkjet-printed metal inks and their application for manufacturing of flexible electronic devices. J Mater Chem C 2:10232–10261. CrossRefGoogle Scholar
  28. Zhang F, Tuck C, Hague R, He Y, Saleh E, Li Y, Sturgess C, Wildman R (2016) Inkjet printing of polyimide insulators for the 3D printing of dielectric materials for microelectronic applications. J Appl Polym Sci 133:43361. Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • Matic Krivec
    • 1
    Email author
  • Martin Lenzhofer
    • 1
  • Thomas Moldaschl
    • 1
  • Jaka Pribošek
    • 1
  • Anže Abram
    • 2
  • Michael Ortner
    • 1
  1. 1.CTR Carinthian Tech Research AGVillachAustria
  2. 2.Jožef Stefan InstituteLjubljanaSlovenia

Personalised recommendations