Skip to main content
Log in

Impact of aspect ratio of nanoscale hybrid p-Ge/n-Si complementary FinFETs on the logic performance

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

We investigate the effect of aspect ratio (AR) with a given fin width (Wfin) of hybrid FinFETs at channel length of 20 nm on their digital performance using extensive numerical device and circuit simulations. The hybrid complementary FinFETs (HCFF), consist of Si channel n-FinFETs and Ge channel p-FinFETs and the performance is gauged in terms of device gain, noise margins (NMs), rise time (tr), fall time (tf) and propagation delay (td). Our findings reveal that tr and NM for our proposed HCFF inverter exhibit significant improvements of 37.31 and 8.03% compared to its corresponding Si value at aspect ratio of 5. Furthermore, the frequency of oscillations (fosc) of a nine-stage ring oscillator built using HCFF inverters shows 95.17% improvement with respect to that obtained with its equivalent Si counterpart at AR = 5 and supply voltage = 0.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Boykin TB (2004) Valence band effective-mass expressions in the sp3d5s* empirical tight-binding model applied to a Si and Ge parametrization. Phys Rev B 69:115201-1–11520110

    Article  Google Scholar 

  • Chaudhry A, Kumar MJ (2004) Controlling short-channel effects in deep-submicron SOI MOSFETs for improved reliability: a review. IEEE Trans Device Mater Reliab 4(1):99–109

    Article  Google Scholar 

  • Cheynet MC, Pokrant S, Tichelaar FD, Rouviere J-L (2007) Crystal structure and band gap determination of HfO2 thin films. J Appl Phys 101(054101):1–8

    Google Scholar 

  • Chung CT, Chen CW, Lin JC, Wu CC, Chien CH, Luo GL (2012) First experimental Ge CMOS FinFETs directly on SOI substrate. In: Proceedings of the IEEE international electron devices meeting, p 16.4.1

  • Chung CT, Chen CW, Lin JC, Wu CC, Chien CH, Luo GL, Kei CC, Hsiao CN (2013) Epitaxial germanium on SOI substrate and its application of fabricating high ION/IOFF ratio Ge FinFETs. IEEE Trans Electron Devices 60(6):1878–1883

    Article  Google Scholar 

  • Dal MJH et al (2007) Highly manufacturable FinFETs with sub-10 nm Fin width and high aspect ratio fabricated with immersion lithography. In: Proceedings of the IEEE symposium on VLSI technology digest, p 110

  • Dal MJH, Vellianitis G, Doornbos G, Duriez B, Shen TM, Wu CC, Oxland R, Bhuwalka K, Holland M, Lee TL, Wann C, Hsieh CH, Lee BH, Yin KM, Wu ZQ, Passlack M, Diaz CH (2012) Demonstration of scaled Ge p-channel FinFETs integrated on Si. In: Proceedings of the IEEE international electron device meeting, p 23.5.1

  • Dal MJH, Vellianitis G, Duriez B, Doornbos G, Hsieh CH, Lee BH, Yin KM, Passlack M, Diaz CH (2014) Germanium p-channel FinFET fabricated by aspect ratio trapping. IEEE Trans Electron Devices 61(2):430–436

    Article  Google Scholar 

  • Duriez B, Vellianitis G, Dal MJH, Doornbos G, Oxland R, Bhuwalka KK, Holland M, Chang YS, Hsieh CH, Yin KM, See YC, Passlack M, Diaz CH (2013) Scaled p-channel Ge FinFET with optimized gate stack and record performance integrated on 300 mm Si wafers. In: Proceedings of the IEEE international electron devices meeting, p 20.1.1

  • Huang X, Lee W-C, Kuo C, Hisamoto D, Chang L, Kedzierski J, Anderson E, Takeuchi H, Choi Y-K, Asano K, Subramanian V, King T-J, Bokor J, Hu C (1999) Sub-50 nm FinFET: PMOS. In: Proceedings of the IEEE international electron devices meeting, p 505

  • Huang X, Lee W-C, Kuo C, Hisamoto D, Chang L, Kedzierski J, Anderson E, Takeuchi H, Choi Y-K, Asano K, Subramanian V, King T-J, Bokor J, Hu C (2001) Sub-50 nm P-channel FinFET. Trans Electron Devices 48(5):880–886

    Article  Google Scholar 

  • International technology roadmap for semiconductors (2005) (online). http://public.itrs2.net. Accessed 24 Mar 2017

  • Kang CY, Yang JW, Oh J, Choi R, Suh YJ, Floresca HC, Kim J, Kim M, Lee BH, Tseng HH, Jammy R (2008) Effects of film stress modulation using TiN metal gate on stress engineering and its impact on device characteristics in metal gate/high-k dielectric SOI FinFETs. IEEE Electron Device Lett 29(5):487–490

    Article  Google Scholar 

  • Khandelwal S, Duarte JP, Chauhan YS, Hu C (2014) Modeling 20-nm germanium FinFET with the industry standard FinFET model. IEEE Electron Device Lett 35(7):711–713

    Article  Google Scholar 

  • Khandelwal S et al (2015) BSIM-CMG107.0.0 multi-gate compact MOSFET model technical manual (online). http://bsim.berkeley.edu/models/bsimcmg/latest-release. Accessed 24 Mar 2017

  • Lin D, Brammertz G, Sioncke S, Fleischmann C, Delabie A, Martens K, Bender H, Conard T, Tseng WH, Lin JC, Wang WH, Temst K, Vatomme A, Mitard J, Caymax M, Meuris M, Heyns M, Hoffmann T (2009) Ënabling the high-performance InGaAs/Ge CMOS: a common gate stack solution. In: Proceedings of the IEEE international electron devices meeting, p 327

  • Lubow A, Beigi SI, Ma TP (2010) Comparison of drive currents in metal-oxide-semiconductor field-effect-transistors made of Si, Ge, GaAs, InGaAs, and InAs channels. Appl Phys Lett 96:122105-1–122105-3

    Article  Google Scholar 

  • Martin CG, Oruklu E (2014) Performance evaluation of FinFET pass-transistor full adders with BSIM-CMG model. In: Proceedings of the IEEE international symposium of circuit & system, p 917

  • Mohapatra SK, Pradhan KP, Singh D, Sahu PK (2015) The role of geometry parameters and fin aspect ratio of sub-20 nm SOI-FinFET: an analysis towards analog and RF circuit design. IEEE Trans Nanotechnol 14(3):546–554

    Article  Google Scholar 

  • Seoane N, Indalecio G, Aldegunde M, Nagy D, Elmessary MA, Loureiro AJG, Kalna K (2016) Comparison of Fin-edge roughness and metal grain work function variability in InGaAs and Si FinFETs. IEEE Trans Electron Device 63(3):1209–1216

    Article  Google Scholar 

  • Synopsys HSPICE User Guide (2008) Simulation and analysis, version B-2008.09

  • Takagi S (2011) High mobility channel MOS device technologies toward nano-CMOS era. In: Proceedings of the IEEE nanotechnology materials and devices conference, p 281

  • Takagi S, Zhang R, Kim S-H, Taoka N, Yokoyama M, Suh JK, Suzuki R, Takenaka M (2012) MOS interface and channel engineering for high-mobility Ge/III-V CMOS. In: Proceedings of the IEEE international electron devices meeting, p 505

  • Tawfik SA, Kursun V (2008) Work-function engineering for reduced power and higher integration density: an alternative to sizing for stability in FinFET memory circuits. In: Proceedings of the IEEE international symposium of circuit & system, p 788

  • Tewari S, Biswas A, Mallik A (2015) A investigation on high performance cmos with p-ge and n-ingaasmosfets for logic applications. IEEE Trans Nanotechnol 14(2):275–281

    Article  Google Scholar 

  • Tsormpatzoglou A, Dimitriadis CA, Clerc R, Rafhay Q, Pananakakis G, Ghibaudo G (2007) Semi-analytical modeling of short-channel effects in Si and Ge symmetric double-gate MOSFETs. IEEE Trans Electron Device 54(8):1943–1952

    Article  Google Scholar 

  • Vellianitis G, Dal MJH, Duriez B, Lee TL, Passlack M, Wann CH, Diaz CH (2013) High crystalline quality Ge grown by MOCVD inside narrow shallow trench isolation defined on Si (001) substrates. J Cryst Growth 383:9–11

    Article  Google Scholar 

  • Wang LS, Xu JP, Liu L, Lu HH, Lai PT, Tang WM (2015) Interfacial and electrical properties of InGaAs metal-oxide-semiconductor capacitor with TiON/TaON multilayer composite gate dielectric. Appl Phys Lett 106(12):123504-1–123504-4

    Google Scholar 

  • Xuan Y, Wu YQ, Lin HC, Shen T, Ye PD (2007) Submicrometer inversion-type enhancement mode InGaAs MOSFET with atomic-layer-deposited Al2O3 as gate dielectric. IEEE Electron Device Lett 28(11):935–938

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suchismita Tewari.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, K., Tewari, S. & Biswas, A. Impact of aspect ratio of nanoscale hybrid p-Ge/n-Si complementary FinFETs on the logic performance. Microsyst Technol 26, 3069–3076 (2020). https://doi.org/10.1007/s00542-017-3633-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3633-0

Navigation