Cell therapy using an array of ultrathin hollow microneedles

Abstract

Cell transplantation traditionally employs needles to inject donor cells into tissues to treat certain diseases. However, it is difficult for the current method to achieve multiple parallel equidistant injections, which are ideal for cell therapy. This paper presents a new cell transplantation method using an array of ultrathin microneedles. The main characteristic of the needles is their high aspect ratio: each needle is 500 μm long, and has a 50 μm diameter and a very thin wall (2 μm-thick SiO2 and 1.5 μm-thick Si3N4). An array of such microneedles was successfully used to inject fluorescently labeled Mardin–Darby canine kidney cells into rat liver tissue. Viability of the cells inserted using this method was verified after 5 days. Preliminary results show that this type of microneedle array can be used for cell therapy.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Alhasan L, Qi A, Al-Abboodi A, Rezk A, Chan PP, Iliescu C, Yeo LY (2016) Rapid enhancement of cellular spheroid assembly by acoustically driven microcentrifugation. ACS Biomater Sci Eng 2:1013–1022

    Article  Google Scholar 

  2. Avram A et al (2014) Fabrication of thin dielectric membranes for microwave applications. Dig J Nanomater Biostruct 9:475–481

    Google Scholar 

  3. Beißner N, Lorenz T, Reichl S (2016) Organ on chip. In: Microsystems for pharmatechnology. Springer, New York, pp 299–339

  4. Chen B, Wei J, Tay FE, Wong YT, Iliescu C (2008) Silicon microneedle array with biodegradable tips for transdermal drug delivery. Microsyst Technol 14:1015–1019

    Article  Google Scholar 

  5. Chen B, Wei J, Iliescu C (2010) Sonophoretic enhanced microneedles array (SEMA)—improving the efficiency of transdermal drug delivery. Sens Actuators B Chem 145:54–60

    Article  Google Scholar 

  6. Cima I, Wen Yee C, Iliescu FS, Min Phyo W, Hon Lim K, Iliescu C, Han Tan M (2013) Label-free isolation of circulating tumor cells in microfluidic devices: current research and perspectives. Biomicrofluidics 7:011810

    Article  Google Scholar 

  7. Duffield JS, Park KM, Hsiao L-L, Kelley VR, Scadden DT, Ichimura T, Bonventre JV (2005) Restoration of tubular epithelial cells during repair of the postischemic kidney occurs independently of bone marrow-derived stem cells. J Clin Investig 115:1743

    Article  Google Scholar 

  8. Esch EW, Bahinski A, Huh D (2015) Organs-on-chips at the frontiers of drug discovery. Nat Rev Drug Discov 14:248

    Article  Google Scholar 

  9. Gojo S et al (2003) In vivo cardiovasculogenesis by direct injection of isolated adult mesenchymal stem cells. Exp Cell Res 288:51–59

    Article  Google Scholar 

  10. Griffith LG, Naughton G (2002) Tissue engineering—current challenges and expanding opportunities. Science 295:1009–1014

    Article  Google Scholar 

  11. Griss P, Stemme G (2003) Side-opened out-of-plane microneedles for microfluidic transdermal liquid transfer. J Microelectromech Syst 12:296–301

    Article  Google Scholar 

  12. Henry S, McAllister DV, Allen MG, Prausnitz MR (1998) Microfabricated microneedles: a novel approach to transdermal drug delivery. J Pharm Sci 87:922–925

    Article  Google Scholar 

  13. Iliescu C, Tresset G (2015) Microfluidics-driven strategy for size-controlled DNA compaction by slow diffusion through water stream. Chem Mater 27:8193–8197

    Article  Google Scholar 

  14. Iliescu C, Tay FE, Wei J (2006) Low stress PECVD—SiNx layers at high deposition rates using high power and high frequency for MEMS applications. J Micromech Microeng 16:869

    Article  Google Scholar 

  15. Iliescu C, Tresset G, Xu G (2007) Continuous field-flow separation of particle populations in a dielectrophoretic chip with three dimensional electrodes. Appl Phys Lett 90:234104

    Article  Google Scholar 

  16. Iliescu C et al (2011) Residual stress in thin films PECVD depositions. J Optoelectron Adv Mater 13:387–394

    Google Scholar 

  17. Iliescu FS, Sterian AP, Petrescu M (2013) A parallel between transdermal drug delivery and microtechnology. Univ Politech Buchar Sci Bull Ser A Appl Math Phys 75:227–236

    Google Scholar 

  18. Kochhar JS, Anbalagan P, Shelar SB, Neo JK, Iliescu C, Kang L (2014) Direct microneedle array fabrication off a photomask to deliver collagen through skin. Pharm Res 31:1724–1734

    Article  Google Scholar 

  19. Kubo K, Tsukasa N, Uehara M, Izumi Y, Ogino M, Kitano M, Sueda T (1997) Calcium and silicon from bioactive glass concerned with formation of nodules in periodontal-ligament fibroblasts in vitro. J Oral Rehabil 24:70–75

    Article  Google Scholar 

  20. Lanza R, Langer R, Vacanti JP (2014) Principles of tissue engineering, 4th edn. Academic Press, Boston

    Google Scholar 

  21. Larrañeta E, Lutton RE, Woolfson AD, Donnelly RF (2016a) Microneedle arrays as transdermal and intradermal drug delivery systems: materials science, manufacture and commercial development. Mater Sci Eng R Rep 104:1–32

    Article  Google Scholar 

  22. Larrañeta E, McCrudden MTC, Courtenay AJ, Donnelly RF (2016b) Microneedles: a new frontier in nanomedicine delivery. Pharm Res 33:1055–1073. https://doi.org/10.1007/s11095-016-1885-5

    Article  Google Scholar 

  23. Lee W, Tseng P, Di Carlo D (eds) (2017) Microfluidic cell sorting and separation technology. In: Microtechnology for cell manipulation and sorting. Microsystems and Nanosystems. Springer, Cham

  24. Lim SH, Ng JY, Kang L (2017) Three-dimensional printing of a microneedle array on personalized curved surfaces for dual-pronged treatment of trigger finger. Biofabrication 9:015010

    Article  Google Scholar 

  25. Lin L, Pisano AP (1999) Silicon-processed microneedles. J Microelectromech Syst 8:78–84

    Article  Google Scholar 

  26. Liu D, Zhang H, Fontana F, Hirvonen JT, Santos HA (2017) Microfluidic-assisted fabrication of carriers for controlled drug delivery. Lab Chip 17:1856–1883

    Article  Google Scholar 

  27. Lu M, Ozcelik A, Grigsby CL, Zhao Y, Guo F, Leong KW, Huang TJ (2016) Microfluidic hydrodynamic focusing for synthesis of nanomaterials. Nano Today 11:778–792

    Article  Google Scholar 

  28. Müller A et al (2001) Micromachined filters for 38 and 77 GHz supported on thin membranes. J Micromech Microeng 11:301

    Article  Google Scholar 

  29. Nayak A, Babla H, Han T, Das DB (2016) Lidocaine carboxymethylcellulose with gelatine co-polymer hydrogel delivery by combined microneedle and ultrasound. Drug Deliv 23:658–669

    Article  Google Scholar 

  30. Ni M, Tong WH, Choudhury D, Rahim NAA, Iliescu C, Yu H (2009) Cell culture on MEMS platforms: a review. Int J Mol Sci 10:5411–5441

    Article  Google Scholar 

  31. Ni M, Tresset G, Iliescu C (2017) Self-assembled polysulfone nanoparticles using microfluidic chip. Sens Actuators B Chem 252:458–462

    Article  Google Scholar 

  32. Ohashi K et al (2007) Engineering functional two-and three-dimensional liver systems in vivo using hepatic tissue sheets. Nat Med 13:880–886

    Article  Google Scholar 

  33. Park J-H, Allen MG, Prausnitz MR (2005) Biodegradable polymer microneedles: fabrication, mechanics and transdermal drug delivery. J Control Release 104:51–66

    Article  Google Scholar 

  34. Quimby J, Dow S (2015) Novel treatment strategies for feline chronic kidney disease: a critical look at the potential of mesenchymal stem cell therapy. Vet J 204:241–246

    Article  Google Scholar 

  35. Resnik D, Možek M, Pečar B, Dolžan T, Janež A, Urbančič V, Vrtačnik D (2015) Characterization of skin penetration efficacy by Au-coated Si microneedle array electrode. Sens Actuators A 232:299–309

    Article  Google Scholar 

  36. Roda A et al (2016) Progress in chemical luminescence-based biosensors: a critical review. Biosens Bioelectron 76:164–179

    Article  Google Scholar 

  37. Sanjay ST, Zhou W, Dou M, Tavakoli H, Ma L, Xu F, Li X (2017) Recent advances of controlled drug delivery using microfluidic platforms. Adv Drug Deliv Rev (in press)

  38. Skuk D, Tremblay JP (2003) Myoblast transplantation: the current status of a potential therapeutic tool for myopathies. J Muscle Res Cell Motil 24:287–302

    Article  Google Scholar 

  39. Stoeber B, Liepmann D (2005) Arrays of hollow out-of-plane microneedles for drug delivery. J Microelectromech Syst 14:472–479

    Article  Google Scholar 

  40. Tong WH et al (2016) Constrained spheroids for prolonged hepatocyte culture. Biomaterials 80:106–120

    Article  Google Scholar 

  41. Tuan-Mahmood T-M, McCrudden MT, Torrisi BM, McAlister E, Garland MJ, Singh TRR, Donnelly RF (2013) Microneedles for intradermal and transdermal drug delivery. Eur J Pharm Sci 50:623–637

    Article  Google Scholar 

  42. Yu F, Zhuo S, Qu Y, Choudhury D, Wang Z, Iliescu C, Yu H (2017) On chip two-photon metabolic imaging for drug toxicity testing. Biomicrofluidics 11:034108

    Article  Google Scholar 

  43. Zhang S et al (2011) A robust high-throughput sandwich cell-based drug screening platform. Biomaterials 32:1229–1241

    Article  Google Scholar 

  44. Zhou Y, Tang L, Zeng G, Zhang C, Zhang Y, Xie X (2016) Current progress in biosensors for heavy metal ions based on DNAzymes/DNA molecules functionalized nanostructures: a review. Sens Actuators B Chem 223:280–294

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ciprian Iliescu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Iliescu, F.S., Teo, J.C.M., Vrtacnik, D. et al. Cell therapy using an array of ultrathin hollow microneedles. Microsyst Technol 24, 2905–2912 (2018). https://doi.org/10.1007/s00542-017-3631-2

Download citation