Skip to main content
Log in

Performance analysis of diamond search algorithm over full search algorithm

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Motion estimation is a progression used to estimate motion vectors between two or more images with a high degree of temporal redundancy. It is commonly used in video compression to attain high compression ratios as well as used in several applications for object tracking. In this paper a novel approach for diamond search algorithm has been recommended to overcome the problem encountered by several existing block matching algorithms especially with full search algorithm in reference of peak signal-to-noise ratio, required number of examine or search points as well as computational complexity. Simulation results reflect that recommended algorithm acting well compared to all existing algorithms. Experimentally 88–99% of the motion vectors are found inside the circle which has radius of 3-pixel unit and fixed on the place of zero motion. The proposed algorithm is used to implement various standards examples such as MPEG1 and MPEG4.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Barjatya A (2004) Block matching algorithms for motion estimation. IEEE Trans Evol Comput 8(3):225–229

    Article  Google Scholar 

  • Bergen JR, Anandan P, Hanna KJ, Hingorani R (1992) Hierarchical model-based motion estimation. In: Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics), LNCS 588:237–252

  • Brünig M, Niehsen W (2001) Fast full-search block matching. IEEE Trans Circuits Syst Video Technol 11(2):241–247

    Article  Google Scholar 

  • Cai J, David Pan W (2012) On fast and accurate block-based motion estimation algorithms using particle swarm optimization. Inf Sci (Ny) 197:53–64

    Article  Google Scholar 

  • Dikbas S, Altunbasak Y (2013) Novel true-motion estimation algorithm and its application to motion-compensated temporal frame interpolation. IEEE Trans Image Process 22(8):2931–2945

    Article  MathSciNet  MATH  Google Scholar 

  • Ertürk S (2007) A new perspective to block motion estimation for video compression: high-frequency component matching. IEEE Signal Process Lett 14(2):113–116

    Article  Google Scholar 

  • Farsiu S, Robinson MD, Elad M, Milanfar P (2004) Fast and robust multiframe super resolution. IEEE Trans Image Process 13(10):1327–1344

    Article  Google Scholar 

  • Feghali R (2005) Multi-frame simultaneous motion estimation and segmentation. IEEE Trans Consum Electron 51(1):245–248

    Article  Google Scholar 

  • Gao XQ, Duanmu CJ, Zou CR (2000) A multilevel successive elimination algorithm for block matching motion estimation. IEEE Trans Image Process 9(3):501–504

    Article  Google Scholar 

  • Jing X, Chau LP (2004) An efficient three-step search algorithm for block motion estimation. IEEE Trans. Multimed 6(3):435–438

    Article  Google Scholar 

  • Jung H, Ye JC (2010) Motion estimated and compensated compressed sensing dynamic magnetic resonance imaging: what we can learn from video compression techniques. Int J Imaging Syst Technol 20(2):81–98

    Article  Google Scholar 

  • Karunakar AK, Pai MMM (2009) Motion-compensated temporal filtering with optimized motion estimation. J Real-Time Image Process 4(4):329–338

    Article  Google Scholar 

  • Kim M (2005) A fast VLSI architecture for full-search variable block size motion estimation in MPEG-4 AVC/H.264. Proc. ASP-DAC 2005. Asia South Pacific Des Autom Conf 1:631–634

    Google Scholar 

  • Kim JN, Choi TS (1998) A fast three-step search algorithm with minimum checking points using unimodal error surface assumption. IEEE Trans Consum Electron 44(3):638–648

    Article  Google Scholar 

  • Li R, Zeng B, Liou ML (1994) A new three-step search algorithm for block motion estimation. IEEE Trans Circuits Syst Video Technol 4(4):438–442

    Article  Google Scholar 

  • Lin YC, Tai SC (1997) Fast full-search block-matching algorithm for motion-compensated video compression. IEEE Trans Commun 45(5):527–531

    Article  Google Scholar 

  • Luo J, Konofagou E (2010) A fast normalized cross-correlation calculation method for motion estimation. IEEE Trans Ultrason Ferroelectr Freq Control 57(6):1347–1357

    Article  Google Scholar 

  • Luo J, Ahmad I, Liang Y, Swaminathan V (2008) Motion estimation for content adaptive video compression. IEEE Trans Circuits Syst Video Technol 18(7):900–909

    Article  Google Scholar 

  • Niitsuma H, Maruyama T (2010) Sum of absolute difference implementations for image processing on FPGAs. In: Proceedings—2010 international conference on field programmable logic and applications, FPL 2010, pp 167–170

  • Nisar H, Choi T-S (2000) Fast four step search algorithm using UESA and quadrant selection approach for motion estimation. In: Proceedings of SPIE—the international society for optical engineering, vol. 3974

  • Ouyang W, Tombari F, Mattoccia S, Di Stefano L, Cham WK (2012) Performance evaluation of full search equivalent Pattern matching algorithms. IEEE Trans Pattern Anal Mach Intell 34(1):127–143

    Article  Google Scholar 

  • Pal M (2015) An optimized block matching algorithm for motion estimation using logical image. Int Conf Comput Commun Autom ICCCA 2015:1138–1142

    Google Scholar 

  • Po Lai-man, Ma Wing-chung (1996a) A novel four-step search algorithm for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 6(3):313–317

    Article  Google Scholar 

  • Po L, Ma W (1996b) A novel four-step search algorithm for fast block motion estimation. Circuits Syst Video Technol 6(3):313–317

    Article  Google Scholar 

  • Sullivan GJ, Wiegand T (2005) Video compression-from concepts to the H.264/AVC standard. Proc IEEE 93(1):18–31

    Article  Google Scholar 

  • Sullivan GJ, Ohm JR, Han WJ, Wiegand T (2012) Overview of the high efficiency video coding (HEVC) standard. IEEE Trans Circuits Syst Video Technol 22(12):1649–1668

    Article  Google Scholar 

  • Sun NN, Fan C, Xia X (2009) An effective three-step search algorithm for motion estimation. In: ITME2009—proceedings 2009 IEEE international symposium on IT in medicine and education, pp 400–403

  • Vassiliadis S, Hakkennes EA, Wong JSSM, Pechanek GG (1998) The sum-absolute-difference motion estimation accelerator. In: Proceedings. 24th EUROMICRO Conf. (Cat. No.98EX204), vol. 2

  • Wiegand T (2003) Overview of the H.264/AVC video coding standard. Syst Video 13(7):560–576

    Article  Google Scholar 

  • Yaakob R, Aryanfar A, Halin AA, Sulaiman N (2013) A comparison of different block matching algorithms for motion estimation. Procedia Technol 11(Iceei):199–205

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rahul Priyadarshi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Priyadarshi, R., Soni, S.K., Bhadu, R. et al. Performance analysis of diamond search algorithm over full search algorithm. Microsyst Technol 24, 2529–2537 (2018). https://doi.org/10.1007/s00542-017-3625-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3625-0

Navigation