Advertisement

Microsystem Technologies

, Volume 24, Issue 5, pp 2445–2461 | Cite as

Longitudinal vibration analysis of nanorods with multiple discontinuities based on nonlocal elasticity theory using wave approach

  • Masih Loghmani
  • Mohammad Reza Hairi Yazdi
  • Mansour Nikkhah Bahrami
Technical Paper

Abstract

Discontinuities such as cracks and steps on the length, and the mass of attached buckyball on the tip, of nanoresonators have large effects on nanoresonators natural frequencies. In this paper, free longitudinal vibration of multiple cracked, stepped nanorods with a buckyball at tip is studied using the Eringen nonlocal elasticity theory. From wave viewpoint, vibrations can be considered as travelling waves along structures. Waves propagate in a waveguide and transmit and reflect at discontinuities. The propagation, transmission and reflection functions are derived for nanorods. Cracks and steps as discontinuities, and buckyball at the end, clamped end and free end for boundary conditions, are considered. Cracks are modelled by an infinitesimal length, massless linear spring. Steps are formed by connecting two nanorods with different cross section areas and mechanical properties and buckyballs are considered as lumped masses. These propagation, transmission and reflection functions are combined to provide a short comprehensive systematic analytical approach to analyze the free longitudinal vibration of nanorods. Also, explicit expressions for natural frequencies are derived. The effects of crack intensity, sectional change as step, mass of buckyball, location of crack and step and also small-scale effect on natural frequencies are discussed. The approach is explained using several examples and the closed-form solutions are derived for some cases. The results are compared with the existing methods and can be used as benchmark for other future works.

References

  1. Achenbach JD (1973) Wave propagation in elastic solids. North-Holland Publishing Company, AmsterdamzbMATHGoogle Scholar
  2. Adhikari S, Chowdhury R (2010) The calibration of carbon nanotube based bionanosensors. J Appl Phys 107(12):124322.  https://doi.org/10.1063/1.3435316 CrossRefGoogle Scholar
  3. Adhikari S, Murmu T, McCarthy MA (2013) Dynamic finite element analysis of axially vibrating nonlocal rods. Finite Elem Anal Des 63:42–50.  https://doi.org/10.1016/j.finel.2012.08.001 MathSciNetCrossRefzbMATHGoogle Scholar
  4. Ansari R, Gholami R (2016) Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory. Compos Part B Eng 95:301–316.  https://doi.org/10.1016/j.compositesb.2016.04.002 CrossRefGoogle Scholar
  5. Arash B, Jiang JW, Rabczuk T (2015) A review on nanomechanical resonators and their applications in sensors and molecular transportation. Appl Phys Rev 2:021301.  https://doi.org/10.1063/1.4916728 CrossRefGoogle Scholar
  6. Arlett JL, Myers EB, Roukes ML (2011) Comparative advantages of mechanical biosensors. Nat Nanotechnol 6:203–215.  https://doi.org/10.1038/nnano.2011.44 CrossRefGoogle Scholar
  7. Aydogdu M (2009) Axial vibration of the nanorods with the nonlocal continuum rod model. Physica E 41(5):861–864.  https://doi.org/10.1016/j.physe.2009.01.007 CrossRefGoogle Scholar
  8. Aydogdu M (2012) Axial vibration analysis of nanorods (carbon nanotubes) embedded in an elastic medium using nonlocal elasticity. Mech Res Commun 43:34–40.  https://doi.org/10.1016/j.mechrescom.2012.02.001 CrossRefGoogle Scholar
  9. Aydogdu M (2014) Longitudinal wave propagation in multiwalled carbon nano-tubes. Compos Struct 107:578–584.  https://doi.org/10.1016/j.compstruct.2013.08.031 CrossRefGoogle Scholar
  10. Aydogdu M, Elishakoff I (2014) On the vibration of nanorods restrained by a linear spring in-span. Mech Res Commun 57:90–96.  https://doi.org/10.1016/j.mechrescom.2014.03.003 CrossRefGoogle Scholar
  11. Aydogdu M, Filiz S (2011) Modeling carbon nanotube-based mass sensors using axial vibration and nonlocal elasticity. Physica E 42:1229–1234.  https://doi.org/10.1016/j.physe.2011.02.006 CrossRefGoogle Scholar
  12. Babaei H, Shahidi AR (2011) Small-scale effects on the buckling of quadrilateral nanoplates based on nonlocal elasticity theory using the Galerkin method. Arch Appl Mech 81(8):1051–1062.  https://doi.org/10.1007/s00419-010-0469-9 CrossRefzbMATHGoogle Scholar
  13. Chang TP (2013) Axial vibration of non-uniform and non-homogeneous nanorods based on nonlocal elasticity theory. Appl Math Comput 219:4933–4941.  https://doi.org/10.1016/j.amc.2012.11.059 MathSciNetzbMATHGoogle Scholar
  14. Chowdhury R, Adhikari S, Mitchell J (2009) Vibrating carbon nanotube based bio-sensors. Physica E 42(2):104–109.  https://doi.org/10.1016/j.physe.2009.09.007 CrossRefGoogle Scholar
  15. Ciekot A (2012) Free axial vibration of a nanorod using the WKB method. Sci Res Inst Math Comput Sci 11:29–34CrossRefGoogle Scholar
  16. Danesh M, Farajpour A, Mohammadi M (2012) Axial vibration analysis of a tapered nanorod based on nonlocal elasticity theory and differential quadrature method. Mech Res Commun 39:23–27.  https://doi.org/10.1016/j.mechrescom.2011.09.004 CrossRefzbMATHGoogle Scholar
  17. Dimarogonas AD (1996) Vibration of cracked structures: a state of the art review. Eng Fract Mech 55(5):831–857.  https://doi.org/10.1109/JMEMS.2015.2434390 CrossRefGoogle Scholar
  18. Ebrahimi F, Barati MR (2016) Vibration analysis of smart piezoelectrically actuated nanobeams subjected to magneto-electrical field in thermal environment. J Vib Control.  https://doi.org/10.1177/1077546316646239 Google Scholar
  19. Ebrahimi F, Barati MR (2017) Small-scale effects on hygro-thermomechanical vibration of temperature-dependent, nonhomogeneous nanoscale beams. Mech Adv Mater Struc 24(11):924–936.  https://doi.org/10.1080/15376494.2016.1196795 CrossRefGoogle Scholar
  20. Ebrahimi F, Hosseini SHS (2016) Thermal effects on nonlinear vibration behavior of viscoelastic nanosize plates. J Thermal Stresses 39(5):606–625.  https://doi.org/10.1080/01495739.2016.1160684 CrossRefGoogle Scholar
  21. Ebrahimi F, Jafari A (2016) Higher-order thermomechanical vibration analysis of temperature-dependent FGM beams with porosities. J Engrg Math 2016:9561504.  https://doi.org/10.1155/2016/9561504 Google Scholar
  22. Eom K, Park HS, Yoon DS, Kwon T (2011) Nanomechanical resonators and their applications in biological/chemical detection: nanomechanics principles. Phys Rep 503:115–163.  https://doi.org/10.1016/j.physrep.2011.03.002 CrossRefGoogle Scholar
  23. Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54:4703–4710.  https://doi.org/10.1063/1.332803 CrossRefGoogle Scholar
  24. Eringen AC, Edelen DGB (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248.  https://doi.org/10.1016/0020-7225(72)90039-0 MathSciNetCrossRefzbMATHGoogle Scholar
  25. Farajpour A, Rastgoo A (2017) Size-dependent static stability of magneto-electro-elastic CNT/MT-based composite nanoshells under external electric and magnetic fields. Microsyst Technol.  https://doi.org/10.1007/s00542-017-3440-7 Google Scholar
  26. Farajpour A, Shahidi AR, Mohammadi M, Mahzoon M (2012) Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics. Compos Struct 94(5):1605–1615.  https://doi.org/10.1016/j.compstruct.2011.12.032 CrossRefGoogle Scholar
  27. Farajpour A, Rastgoo A, Mohammadi M (2017) Vibration, buckling and smart control of microtubules using piezoelectric nanoshells under electric voltage in thermal environment. Physica B 509:100–114.  https://doi.org/10.1016/j.physb.2017.01.006 CrossRefGoogle Scholar
  28. Filiz S, Aydogdu M (2010) Axial vibration of carbon nanotube heterojunctions using nonlocal elasticity. Comput Mater Sci 49:619–627.  https://doi.org/10.1016/j.commatsci.2010.06.003 CrossRefGoogle Scholar
  29. Firouz-Abadi RD, Fotouhi MM, Haddadpour H (2011) Free vibration analysis of nanocones using a nonlocal continuum model. Phys Lett A 375(41):3593–3598.  https://doi.org/10.1016/j.physleta.2011.08.035 CrossRefGoogle Scholar
  30. Gil-Santos E, Ramos D, Martinez J, Fernindez-Regulez M, Garcia R, San Paulo A, Calleja M, Tamayo J (2010) Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat Nanotechnol 5:641–645.  https://doi.org/10.1038/nnano.2010.151 CrossRefGoogle Scholar
  31. Guo SQ, Yang SP (2012) Axial vibration analysis of nanocones elasticity theory. Acta Mech Sin 28(3):801–807.  https://doi.org/10.1007/s10409-012-0109-4 MathSciNetCrossRefzbMATHGoogle Scholar
  32. Harland NR, Mace BR, Jones RW (2001) Wave propagation, reflection and transmission in tunable fluid-filled beams. J Sound Vib 241(5):735–754.  https://doi.org/10.1006/jsvi.2000.3316 CrossRefGoogle Scholar
  33. Hermanson GT (2008) Buckyballs, fullerenes, and carbon nanotubes. Bioconj Tech.  https://doi.org/10.1016/B978-0-12-370501-3.00015-1 Google Scholar
  34. Hsu JC, Lee HL, Chang WJ (2011) Longitudinal vibration of cracked nanobeams using nonlocal elasticity theory. Curr Appl Phys 11(6):1384–1388.  https://doi.org/10.1016/j.cap.2011.04.026 CrossRefGoogle Scholar
  35. Huang Z (2012) Nonlocal effects of longitudinal vibration in nanorod with internal long-range interactions. Int J Solids Struct 46:2150–2154.  https://doi.org/10.1016/j.ijsolstr.2012.04.020 CrossRefGoogle Scholar
  36. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58CrossRefGoogle Scholar
  37. Joshi AY, Harsha SP, Sharma SC (2010a) Vibration signature analysis of single walled carbon nanotube based nanomechanical sensors. Physica E 42(8):2115–2123.  https://doi.org/10.1016/j.physe.2010.03.033 CrossRefGoogle Scholar
  38. Joshi AY, Sharma SC, Harsha SP (2010b) Analysis of crack propagation in fixed-free single-walled carbon nanotube under tensile loading using XFEM. J Nanotechnol Eng Med 1(4):041008–041017.  https://doi.org/10.1115/1.4002417 CrossRefGoogle Scholar
  39. Kiani K (2010) Free longitudinal vibration of tapered nanowires in the context of nonlocal continuum theory of Eringen via a perturbation technique. Physica E 43(1):387–397.  https://doi.org/10.1016/j.physe.2010.08.022 CrossRefGoogle Scholar
  40. Kirkham M, Wang ZL, Snyder RL (2008) In situ growth kinetics of ZnO nanobelts. Nanotechnology 19(44):5708–5714.  https://doi.org/10.1088/0957-4484/19/44/445708 CrossRefGoogle Scholar
  41. Lee SK, Mace BR, Brennan MJ (2007) Wave propagation, reflection and transmission in non-uniform one-dimensional waveguides. J Sound Vib 304:31–49.  https://doi.org/10.1016/j.jsv.2007.01.039 CrossRefGoogle Scholar
  42. Loya J, López-Puente J, Zaera R, Fernández-Sáez J (2009) Free transverse vibrations of cracked nanobeams using a nonlocal elasticity model. J Appl Phys 105(4):044309.  https://doi.org/10.1063/1.3068370 CrossRefGoogle Scholar
  43. Mace BR (1984) Wave reflection and transmission in beams. J Sound Vib 97:237–246.  https://doi.org/10.1016/0022-460X(84)90320-1 CrossRefGoogle Scholar
  44. Mei C (2001) Free vibration studies of classical beams/rods with lumped masses at boundaries using an approach based on wave vibration. Int J Mech Eng Educ 39(3):256–268.  https://doi.org/10.7227/IJMEE.39.3.7 CrossRefGoogle Scholar
  45. Mei C (2012) Wave analysis of in-plane vibrations of L-shaped and portal planar frame structures. J Vib Acoust 134(2):021011–021012.  https://doi.org/10.1115/1.4005014 CrossRefGoogle Scholar
  46. Mei C (2013) Comparison of the four rod theories of longitudinally vibrating rods. J Vib Control 21(8):1639–1656.  https://doi.org/10.1177/1077546313494216 MathSciNetCrossRefGoogle Scholar
  47. Mei C, Mace BR (2005) Wave reflection and transmission in Timoshenko beams and wave analysis of Timoshenko beam structures. J Vib Acoust 127(4):382–394.  https://doi.org/10.1115/1.1924647 CrossRefGoogle Scholar
  48. Mei C, Sha H (2015) Analytical and experimental study of vibrations in simple spatial structures. J Vib Control 22(17):3711–3735.  https://doi.org/10.1177/1077546314565807C CrossRefGoogle Scholar
  49. Mei C, Karpenko Y, Moody S, Allen D (2006) Analytical approach to free and forced vibrations of axially loaded cracked Timoshenko beams. J Sound Vib 291:1041–1060.  https://doi.org/10.1016/j.jsv.2005.07.017 CrossRefGoogle Scholar
  50. Mohammadi M, Ghayour M, Farajpour A (2013) Free transverse vibration analysis of circular and annular graphene sheets with various boundary conditions using the nonlocal continuum plate model. Compos B Eng 45(1):32–42.  https://doi.org/10.1016/j.compositesb.2012.09.011 CrossRefGoogle Scholar
  51. Mohammadi M, Farajpour A, Moradi A, Ghayour M (2014) Shear buckling of orthotropic rectangular graphene sheet embedded in an elastic medium in thermal environment. Compos B Eng 56:629–637.  https://doi.org/10.1016/j.compositesb.2013.08.060 CrossRefGoogle Scholar
  52. Mohammadi M, Safarabadi M, Rastgoo A, Farajpour A (2016) Hygro-mechanical vibration analysis of a rotating viscoelastic nanobeam embedded in a visco-Pasternak elastic medium and in a nonlinear thermal environment. Acta Mech 227(8):2207–2232.  https://doi.org/10.1007/s00707-016-1623-4 MathSciNetCrossRefzbMATHGoogle Scholar
  53. Murmu T, Adhikari S (2010) Nonlocal effects in the longitudinal vibration of double-nanorod systems. Physica E 43(1):415–422.  https://doi.org/10.1016/j.physe.2010.08.023 CrossRefGoogle Scholar
  54. Murmu T, Adhikari S (2011) Nonlocal vibration of carbon nanotubes with attached buckyballs at tip. Mech Res Commun 38(1):62–67.  https://doi.org/10.1016/j.mechrescom.2010.11.004 CrossRefzbMATHGoogle Scholar
  55. Narendar S (2011) Terahertz wave propagation in uniform nanorods: a nonlocal continuum mechanics formulation including the effect of lateral inertia. Physica E 43:1015–1020.  https://doi.org/10.1016/j.physe.2010.12.004 CrossRefGoogle Scholar
  56. Narendar S, Gopalakrishnan S (2010) Nonlocal scale effects on ultrasonic wave characteristics of nanorods. Physica E 42(5):1601–1604.  https://doi.org/10.1016/j.physe.2010.01.002 CrossRefGoogle Scholar
  57. Narendar S, Gopalakrishnan S (2011) Axial wave propagation in coupled nanorod system with nonlocal small scale effects. Compos B Eng 42(7):2013–2023.  https://doi.org/10.1016/j.compositesb.2011.05.021 CrossRefGoogle Scholar
  58. Phadikar JK, Pradhan SC (2010) Variational formulation and finite element analysis for nonlocal elastic nanobeams and nanoplates. Comp Mater Sci 49(3):492–499.  https://doi.org/10.1016/j.commatsci.2010.05.040 CrossRefGoogle Scholar
  59. Pisano AA, Sofi A, Fuschi P (2009) Nonlocal integral elasticity: 2D finite element based solutions. Int J Solids Struct 46(21):3836–3849.  https://doi.org/10.1016/j.ijsolstr.2009.07.009 CrossRefzbMATHGoogle Scholar
  60. Polizzotto C (2001) Nonlocal elasticity and related variational principles. Int J Solids Struct 38(42–43):7359–7380.  https://doi.org/10.1016/S0020-7683(01)00039-7 MathSciNetCrossRefzbMATHGoogle Scholar
  61. Pradhan SC (2009) Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory. Phys Lett A 373(45):4182–4188.  https://doi.org/10.1016/j.physleta.2009.09.021 CrossRefzbMATHGoogle Scholar
  62. Pradhan SC, Kumar A (2011) Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method. Compos Struct 93(2):774–779.  https://doi.org/10.1016/j.compstruct.2010.08.004 CrossRefGoogle Scholar
  63. Pugno N (2006) Nanocomplex oscillations as forewarning of fatigue collapse of NEMS. Curr Top Acoust Res 4:11–15Google Scholar
  64. Pugno N (2007) Damage assessment of nanostructures. Key Eng Mat 347:199–204.  https://doi.org/10.4028/www.scientific.net/KEM.347.199 CrossRefGoogle Scholar
  65. Rao CNR, Seshadri R, Govindaraj A, Sen R (1995) Fullerenes, nanotubes, onions and related carbon structures. Mater Sci Eng, R 15(6):209–262.  https://doi.org/10.1016/S0927-796X(95)00181-6 CrossRefGoogle Scholar
  66. Roostai H, Haghpanahi M (2014) Vibration of nanobeams of different boundary conditions with multiple cracks based on nonlocal elasticity theory. Appl Math Model 38(3):1159–1169.  https://doi.org/10.1016/j.apm.2013.08.011 MathSciNetCrossRefGoogle Scholar
  67. Şimşek M (2012) Nonlocal effects in the free longitudinal vibration of axially functionally graded tapered nanorods. Mech Res Commun 61:257–265.  https://doi.org/10.1016/j.commatsci.2012.04.001 Google Scholar
  68. Sun Y, Gao J, Zhu R, Xu J, Chen L, Zhang J, Zhao Q, Yu D (2010) In situ observation of ZnO nanowire growth on zinc film in environmental scanning electron microscope. J Chem Phys 132(12):124705–124714.  https://doi.org/10.1063/1.3370339 CrossRefGoogle Scholar
  69. Tan CA, Kang B (1998) Wave reflection and transmission in an axially strained, rotating Timoshenko shaft. J Sound Vib 213(3):483–510.  https://doi.org/10.1006/jsvi.1998.1517 CrossRefGoogle Scholar
  70. Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98(12):124301–124306.  https://doi.org/10.1063/1.2141648 CrossRefGoogle Scholar
  71. Wang Q, Arash B (2014) A review on applications of carbon nanotubes and graphenes as nano-resonator sensors. Comput Mater Sci 82:350–360.  https://doi.org/10.1016/j.commatsci.2013.10.010 CrossRefGoogle Scholar
  72. Wang Q, Varadan VK (2006) Wave characteristics of carbon nanotubes. Int J Solids Struct 43:254–265.  https://doi.org/10.1016/j.ijsolstr.2005.02.047 CrossRefzbMATHGoogle Scholar
  73. Wang CM, Tan VBC, Zhang YY (2006) Timoshenko beam model for vibration analysis of multi-walled carbon nanotubes. J Sound Vib 294:1060–1072.  https://doi.org/10.1016/j.jsv.2006.01.005 CrossRefGoogle Scholar
  74. Yayli MÖ (2016) An efficient solution method for the longitudinal vibration of nanorods with arbitrary boundary conditions via a hardening nonlocal approach. J Vib Control Des 15:1–17.  https://doi.org/10.1177/1077546316684042 Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Masih Loghmani
    • 1
  • Mohammad Reza Hairi Yazdi
    • 1
  • Mansour Nikkhah Bahrami
    • 1
  1. 1.School of Mechanical Engineering, College of EngineeringUniversity of TehranTehranIran

Personalised recommendations