Skip to main content

Advertisement

Log in

Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In piezoelectric based micro-power generator (PMPG), electrical energy is generated from mechanical vibration by gaining on the piezoelectric effects. This study concentrates on optimization of the output power density of PMPG at an extremely low frequency (ELF) range below 100 Hz. Taguchi method with eight control parameters and signal-to-noise ratios are utilized in design optimization, COMSOL Multiphysics ver. 4.2 was used for PMPG simulation at optimized parameter. Both Taguchi and S/N ratio analyses show that piezoelectric material selected and its dimensions have the most influence on the generated electric energy density. The simulated PMPG resulting output root mean square voltage was 2.47 V, and power density was 0.376 W/cm3. The PMPG design was fabricated with MEMS technology producing 0.29 W/cm3 power density and supplying 2.19 V DC to the final load. The modeling, simulation and fabricated design show that the PMPG is capable of replacing traditional Lithium Iodide (Li-Ion) batteries powering small electronic gadgets, such as biomedical implant and wearable electronics in frequency range of 25–27 Hz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Abed I, Kacem N, Bouhaddi N, Bouazizi M (2016) Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation. Smart Mater Struct 25(2):025018

    Article  Google Scholar 

  • Alrashdan MHS, Majlis BY, Hamzah AA, Marsi N (2013) Design and simulation of piezoelectric micro power harvester for capturing acoustic vibrations. In: Micro and nanoelectronics (RSM), 2013 IEEE regional symposium on, vol no, pp 383–386. https://doi.org/10.1109/RSM.2013.6706556

  • Alrashdan MHS, Hamzah AA, Majlis BY (2014) Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker. Microsyst Technol 21(8):1607–1617. https://doi.org/10.1007/s00542-014-2334-1

    Article  Google Scholar 

  • Alrashdan MHS, Hamzah AA, Majlis BY (2015) RF sputtered PZT thin film at MPB for piezoelectric harvester devices. In: Micro and nanoelectronics (RSM), 2015 IEEE regional symposium on, vol no, pp 1–4, 19–21 Aug 2015. https://doi.org/10.1109/RSM.2015.7355018

  • Amin Karami M, Inman DJ (2012) Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. App Phys Lett 100(4):042901–042904

    Article  Google Scholar 

  • Billinghurst M, Starner T (1999) Wearable devices. New ways to manage information. IEEE J Mag 329(1):57–64

    Google Scholar 

  • Chana WR, Bermela P, Pilawa-Podgurskie RC, Marton CH, Jensen KF, Senkevichb JJ, Joannopoulosa JD, Soljačić M, Celanovic L (2013) Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc Natl Acad Sci USA 110(14):5309–5314

    Article  Google Scholar 

  • Chandrakasan A, Amirtharajah R, Goodman J, Rabiner W (1998) Trends in low power digital signal processing. In: Proceedings of the 1998 IEEE international symposium on circuits and systems, pp 604–607

  • Chang JY (2011) Modeling and analysis of piezo-elastica energy harvester in computer hard disk drives. IEEE Trans Magn 47(7):1862–1867

    Article  Google Scholar 

  • Crawley E, Anderson E (2011) Detailed models of piezoceramic actuation of beams. J Intell Mater Syst Struct 1(1):4

    Article  Google Scholar 

  • Davis WR, Zhang N, Camera K, Chen F, Markovic D, Chan N, Nikolic B, Brodersen RW (2001) A design environment for high throughput, low power dedicated signal processing systems. In: Proceedings of the IEEE custom integrated circuits conference, pp 545–548

  • Delnavaz A, Voix J (2014) Energy harvesting for in-ear devices using ear canal dynamic motion. IEEE Trans Ind Electron 61:583–590

    Article  Google Scholar 

  • Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Wang L, Chen D, Cai B-C, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284

    Article  Google Scholar 

  • Hamzah AA, Majlis BY, Ahmad I (2004) Deflection analysis of epitaxially deposited polysilicon encapsulation for MEMS devices in semiconductor electronics. In: ICSE IEEE international conference on 2004, vol no, p 4, 7–9 Dec 2004. https://doi.org/10.1109/SMELEC.2004.1620960

  • Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301

    Article  Google Scholar 

  • International Telecommunications Union (ITU) Standard (2015) General radio frequency classification. Home page http://www.w2egb.org/technical/freq.htm. Accessed 25 May 2017

  • Jeon YB, Sood R, Jeong J-H, Kim S-G (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators 122(1):16–22

    Article  Google Scholar 

  • Kansal A, Srivastava MB (2005) Distributed energy harvesting for energy-neutral sensor networks. IEEE Pervasive Comput 4:69–70

    Article  Google Scholar 

  • Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, US, pp 3–39. https://doi.org/10.1007/978-0-387-76464-1_1

  • Knight RR, Mo C, Clark WW (2011) MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam. J Electroceram 26(1–4):14–22

    Article  Google Scholar 

  • Li X, Guo M, Dong S (2011) A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Trans Ultrason Ferroelectr Freq 58(4):698–703

    Article  Google Scholar 

  • Liu H, Quan C, Tay CJ, Kobayashi T, Lee C (2011a) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Proc 19:129–133

    Article  Google Scholar 

  • Liu WT, Cheng XY, Fu X, Stefanini C, Dario P (2011b) Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectron Eng 88(8):2251–2254

    Article  Google Scholar 

  • Ly R, Rguiti M, D’Astorg S, Hajjaji A, Courtois C, Leriche A (2011) Modeling and characterization of piezoelectric cantilever bending sensor for energy harvesting. Sens Actuators 168(1):95–100

    Article  Google Scholar 

  • Mahmoudi S, Kacem N, Bouhaddi N (2014) Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater Struct 23(7):075024. https://doi.org/10.1088/0964-1726/23/7/075024

    Article  Google Scholar 

  • Marsi N, Majlis BY, Hamzah AA, Mohd-Yasin F (2014) Development of high temperature resistant of 500 °C employing silicon carbide (3C-SiC) based MEMS pressure sensor. Microsyst Technol 21(2):319–330. https://doi.org/10.1007/s00542-014-2353-y

    Article  Google Scholar 

  • Marzencki M, Charlot B, Basrour S, Colin M, Valbin L (2005) Design and fabrication of piezoelectric micro power generators for autonomous microsystems. In: DTIP ‘05-symposium on design testing integration and packaging of MEMS/MOEMS Montreux, Switzerland, pp 299–302

  • Marzencki M, Ammar Y, Basrour S (2007) Integrated power harvesting system including a MEMS generator and a power management circuit. In: Solid-state sensors, actuators and microsystems conference, transducers international, pp 887–890

  • Miyabuchi H, Yoshimura T, Fujimura N (2011) Direct piezoelectricity of PZT films and application to vibration energy harvesting. J Korean Phys Soc 59(3):2524–2527

    Article  Google Scholar 

  • Mustafa HAB, Kahn MTE (2009) Microstructure cantilever beam for current measurement. S Afr J Sci 105:264–269

    Google Scholar 

  • Poulin G, Sarraute E, Costa E (2004) Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sens Actuators 116(3):461–471

    Article  Google Scholar 

  • Renaud M, Karakaya K, Sterken T, Fiorini P, Hoof CV, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuator 145–146:380–386

    Article  Google Scholar 

  • Shen D, Park JH, Noh JH, Choe SY, Kim SH, Wikle HC, Kim DJ (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators 154(1):103–108

    Article  Google Scholar 

  • Song Y, Hao Q, Kong X, Hu L, Cao J, Gao T (2014) Simulation of the recharging method of implantable biosensors based on a wearable incoherent light source. Sensors 14(11):20687–20701. https://doi.org/10.3390/s141120687

    Article  Google Scholar 

  • Starner T, Paradiso JA (2004) Human generated power for mobile electronics. Low-power electronics, chapter 45. CRC Press, pp 45(1)–45(35)

  • Taguchi G (1987) Taguchi methods orthogonal arrays and linear graphs, tools for quality engineering. American Supplier Institute, Dearborn, pp 35–38

    Google Scholar 

  • Tsao CC, Hocheng H (2004) Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int J Mach Tool Manuf 44:1085–1090

    Article  Google Scholar 

  • Zhang JY, Cao ZP, Kuwano H (2011) Fabrication of lowresidual-stress AlN thin films and their application to microgenerators for vibration energy harvesting. Jpn J Appl Phys 50(9) (Paper No. 09ND18)

  • Zhou Y, Apo DJ, Priya S (2013) Dual-phase self-biased magnetoelectric energy harvester. Appl Phys Lett 103:192909

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the Ministry of Higher Education Malaysia (MoHE) for supporting this project under Grant HiCoE UKM MEMS for Artificial Kidney (AKU-95), and University Kebangsaan Malaysia under Grant UKM-GUP-2011-380.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azrul Azlan Hamzah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alrashdan, M.H.S., Hamzah, A.A. & Majlis, B.Y. Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications. Microsyst Technol 24, 2071–2084 (2018). https://doi.org/10.1007/s00542-017-3608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3608-1

Navigation