Microsystem Technologies

, Volume 24, Issue 4, pp 2071–2084 | Cite as

Power density optimization for MEMS piezoelectric micro power generator below 100 Hz applications

  • Mohd H. S. Alrashdan
  • Azrul Azlan Hamzah
  • Burhanuddin Yeop Majlis
Technical Paper


In piezoelectric based micro-power generator (PMPG), electrical energy is generated from mechanical vibration by gaining on the piezoelectric effects. This study concentrates on optimization of the output power density of PMPG at an extremely low frequency (ELF) range below 100 Hz. Taguchi method with eight control parameters and signal-to-noise ratios are utilized in design optimization, COMSOL Multiphysics ver. 4.2 was used for PMPG simulation at optimized parameter. Both Taguchi and S/N ratio analyses show that piezoelectric material selected and its dimensions have the most influence on the generated electric energy density. The simulated PMPG resulting output root mean square voltage was 2.47 V, and power density was 0.376 W/cm3. The PMPG design was fabricated with MEMS technology producing 0.29 W/cm3 power density and supplying 2.19 V DC to the final load. The modeling, simulation and fabricated design show that the PMPG is capable of replacing traditional Lithium Iodide (Li-Ion) batteries powering small electronic gadgets, such as biomedical implant and wearable electronics in frequency range of 25–27 Hz.



The authors would like to thank the Ministry of Higher Education Malaysia (MoHE) for supporting this project under Grant HiCoE UKM MEMS for Artificial Kidney (AKU-95), and University Kebangsaan Malaysia under Grant UKM-GUP-2011-380.


  1. Abed I, Kacem N, Bouhaddi N, Bouazizi M (2016) Multi-modal vibration energy harvesting approach based on nonlinear oscillator arrays under magnetic levitation. Smart Mater Struct 25(2):025018CrossRefGoogle Scholar
  2. Alrashdan MHS, Majlis BY, Hamzah AA, Marsi N (2013) Design and simulation of piezoelectric micro power harvester for capturing acoustic vibrations. In: Micro and nanoelectronics (RSM), 2013 IEEE regional symposium on, vol no, pp 383–386.
  3. Alrashdan MHS, Hamzah AA, Majlis BY (2014) Design and optimization of cantilever based piezoelectric micro power generator for cardiac pacemaker. Microsyst Technol 21(8):1607–1617. CrossRefGoogle Scholar
  4. Alrashdan MHS, Hamzah AA, Majlis BY (2015) RF sputtered PZT thin film at MPB for piezoelectric harvester devices. In: Micro and nanoelectronics (RSM), 2015 IEEE regional symposium on, vol no, pp 1–4, 19–21 Aug 2015.
  5. Amin Karami M, Inman DJ (2012) Powering pacemakers from heartbeat vibrations using linear and nonlinear energy harvesters. App Phys Lett 100(4):042901–042904CrossRefGoogle Scholar
  6. Billinghurst M, Starner T (1999) Wearable devices. New ways to manage information. IEEE J Mag 329(1):57–64Google Scholar
  7. Chana WR, Bermela P, Pilawa-Podgurskie RC, Marton CH, Jensen KF, Senkevichb JJ, Joannopoulosa JD, Soljačić M, Celanovic L (2013) Toward high-energy-density, high-efficiency, and moderate-temperature chip-scale thermophotovoltaics. Proc Natl Acad Sci USA 110(14):5309–5314CrossRefGoogle Scholar
  8. Chandrakasan A, Amirtharajah R, Goodman J, Rabiner W (1998) Trends in low power digital signal processing. In: Proceedings of the 1998 IEEE international symposium on circuits and systems, pp 604–607Google Scholar
  9. Chang JY (2011) Modeling and analysis of piezo-elastica energy harvester in computer hard disk drives. IEEE Trans Magn 47(7):1862–1867CrossRefGoogle Scholar
  10. Crawley E, Anderson E (2011) Detailed models of piezoceramic actuation of beams. J Intell Mater Syst Struct 1(1):4CrossRefGoogle Scholar
  11. Davis WR, Zhang N, Camera K, Chen F, Markovic D, Chan N, Nikolic B, Brodersen RW (2001) A design environment for high throughput, low power dedicated signal processing systems. In: Proceedings of the IEEE custom integrated circuits conference, pp 545–548Google Scholar
  12. Delnavaz A, Voix J (2014) Energy harvesting for in-ear devices using ear canal dynamic motion. IEEE Trans Ind Electron 61:583–590CrossRefGoogle Scholar
  13. Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Wang L, Chen D, Cai B-C, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37:1280–1284CrossRefGoogle Scholar
  14. Hamzah AA, Majlis BY, Ahmad I (2004) Deflection analysis of epitaxially deposited polysilicon encapsulation for MEMS devices in semiconductor electronics. In: ICSE IEEE international conference on 2004, vol no, p 4, 7–9 Dec 2004.
  15. Hudak NS, Amatucci GG (2008) Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J Appl Phys 103:101301CrossRefGoogle Scholar
  16. International Telecommunications Union (ITU) Standard (2015) General radio frequency classification. Home page Accessed 25 May 2017
  17. Jeon YB, Sood R, Jeong J-H, Kim S-G (2005) MEMS power generator with transverse mode thin film PZT. Sens Actuators 122(1):16–22CrossRefGoogle Scholar
  18. Kansal A, Srivastava MB (2005) Distributed energy harvesting for energy-neutral sensor networks. IEEE Pervasive Comput 4:69–70CrossRefGoogle Scholar
  19. Kim H, Tadesse Y, Priya S (2009) Piezoelectric energy harvesting. In: Priya S, Inman DJ (eds) Energy harvesting technologies. Springer, US, pp 3–39.
  20. Knight RR, Mo C, Clark WW (2011) MEMS interdigitated electrode pattern optimization for a unimorph piezoelectric beam. J Electroceram 26(1–4):14–22CrossRefGoogle Scholar
  21. Li X, Guo M, Dong S (2011) A flex-compressive-mode piezoelectric transducer for mechanical vibration/strain energy harvesting. IEEE Trans Ultrason Ferroelectr Freq 58(4):698–703CrossRefGoogle Scholar
  22. Liu H, Quan C, Tay CJ, Kobayashi T, Lee C (2011a) A MEMS-based piezoelectric cantilever patterned with PZT thin film array for harvesting energy from low frequency vibrations. Phys Proc 19:129–133CrossRefGoogle Scholar
  23. Liu WT, Cheng XY, Fu X, Stefanini C, Dario P (2011b) Preliminary study on development of PVDF nanofiber based energy harvesting device for an artery microrobot. Microelectron Eng 88(8):2251–2254CrossRefGoogle Scholar
  24. Ly R, Rguiti M, D’Astorg S, Hajjaji A, Courtois C, Leriche A (2011) Modeling and characterization of piezoelectric cantilever bending sensor for energy harvesting. Sens Actuators 168(1):95–100CrossRefGoogle Scholar
  25. Mahmoudi S, Kacem N, Bouhaddi N (2014) Enhancement of the performance of a hybrid nonlinear vibration energy harvester based on piezoelectric and electromagnetic transductions. Smart Mater Struct 23(7):075024. CrossRefGoogle Scholar
  26. Marsi N, Majlis BY, Hamzah AA, Mohd-Yasin F (2014) Development of high temperature resistant of 500 °C employing silicon carbide (3C-SiC) based MEMS pressure sensor. Microsyst Technol 21(2):319–330. CrossRefGoogle Scholar
  27. Marzencki M, Charlot B, Basrour S, Colin M, Valbin L (2005) Design and fabrication of piezoelectric micro power generators for autonomous microsystems. In: DTIP ‘05-symposium on design testing integration and packaging of MEMS/MOEMS Montreux, Switzerland, pp 299–302Google Scholar
  28. Marzencki M, Ammar Y, Basrour S (2007) Integrated power harvesting system including a MEMS generator and a power management circuit. In: Solid-state sensors, actuators and microsystems conference, transducers international, pp 887–890Google Scholar
  29. Miyabuchi H, Yoshimura T, Fujimura N (2011) Direct piezoelectricity of PZT films and application to vibration energy harvesting. J Korean Phys Soc 59(3):2524–2527CrossRefGoogle Scholar
  30. Mustafa HAB, Kahn MTE (2009) Microstructure cantilever beam for current measurement. S Afr J Sci 105:264–269Google Scholar
  31. Poulin G, Sarraute E, Costa E (2004) Generation of electrical energy for portable devices comparative study of an electromagnetic and a piezoelectric system. Sens Actuators 116(3):461–471CrossRefGoogle Scholar
  32. Renaud M, Karakaya K, Sterken T, Fiorini P, Hoof CV, Puers R (2008) Fabrication, modelling and characterization of MEMS piezoelectric vibration harvesters. Sens Actuator 145–146:380–386CrossRefGoogle Scholar
  33. Shen D, Park JH, Noh JH, Choe SY, Kim SH, Wikle HC, Kim DJ (2009) Micromachined PZT cantilever based on SOI structure for low frequency vibration energy harvesting. Sens Actuators 154(1):103–108CrossRefGoogle Scholar
  34. Song Y, Hao Q, Kong X, Hu L, Cao J, Gao T (2014) Simulation of the recharging method of implantable biosensors based on a wearable incoherent light source. Sensors 14(11):20687–20701. CrossRefGoogle Scholar
  35. Starner T, Paradiso JA (2004) Human generated power for mobile electronics. Low-power electronics, chapter 45. CRC Press, pp 45(1)–45(35)Google Scholar
  36. Taguchi G (1987) Taguchi methods orthogonal arrays and linear graphs, tools for quality engineering. American Supplier Institute, Dearborn, pp 35–38Google Scholar
  37. Tsao CC, Hocheng H (2004) Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int J Mach Tool Manuf 44:1085–1090CrossRefGoogle Scholar
  38. Zhang JY, Cao ZP, Kuwano H (2011) Fabrication of lowresidual-stress AlN thin films and their application to microgenerators for vibration energy harvesting. Jpn J Appl Phys 50(9) (Paper No. 09ND18)Google Scholar
  39. Zhou Y, Apo DJ, Priya S (2013) Dual-phase self-biased magnetoelectric energy harvester. Appl Phys Lett 103:192909CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Mohd H. S. Alrashdan
    • 2
  • Azrul Azlan Hamzah
    • 1
  • Burhanuddin Yeop Majlis
    • 1
  1. 1.Institute of Microengineering and Nanoelectronics (IMEN)Universiti Kebangsaan MalaysiaBangiMalaysia
  2. 2.Electrical Engineering Department, Engineering FacultyAlhussein Bin Talal UniversityMa’anJordan

Personalised recommendations