Skip to main content
Log in

Design and optimization of DETF resonator based on uncertainty analysis in a micro-accelerometer

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Boundary structure and geometry parameters of the Double-Ended-Tuning Fork (DETF) resonator in a micro-accelerometer are investigated. The theoretical vibration model of a DETF resonator is established and verified by the simulation results obtained by finite element method. Uncertainty analysis incorporating the parametric uncertainty distribution is conducted by establishing the sample-based stochastic model to systematically investigate the influence of different geometry parameters of the DETF resonator on the natural frequency and the sensitivity of DETF resonator. The results reveal the different influences of geometry parameters, which can be used as reference for design and optimization of the DETF resonator of the micro-accelerometer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Ashwin AS, Trey A, Roessig A (2002) Vacuum packaged surface micromachined resonant accelerometer. J Micro Electromech Syst 11:784–793. doi:10.1109/JMEMS.2002.805207

    Article  Google Scholar 

  • Beeby SP, Tudor MJ (1995) Modelling and optimization of micromachined silicon resonators. J Micromech Microeng 5:103–105

    Article  Google Scholar 

  • Beeby SP, Ensell G, White NM (2000) Microengineered silicon double-ended tuning-fork resonators. Eng Sci Educ J 9:265–271. doi:10.1049/esej:20000606

    Article  Google Scholar 

  • Chuang WC, Lee HL, Chang PZ et al (2010) Review on the modeling of electro-static MEMS. Sensors 10:6149–6171. doi:10.3390/s100606149

    Article  Google Scholar 

  • Eloy JC, Mounier E, Roussel P (2005) Status of the inertial MEMS-based sensors in the automotive. In: Advanced microsystems for automotive applications 2005. Springer, Berlin, Heidelberg, pp 43–48

    Chapter  Google Scholar 

  • Hassanpour PA, Cleghorn WL, Esmailzadeh E et al (2007) Vibration analysis of micromachined beam-type resonators. J Sound Vib 308:287–301. doi:10.1016/j.jsv.2007.07.043

    Article  Google Scholar 

  • He L, Xu YP, Palaniapan M (2008) A CMOS readout circuit for SOI resonant accelerometer with 4-μg bias stability and 20-μg/√HZ resolution. Solid State Circuits 43:1480–1490. doi:10.1109/JSSC.2008.923616

    Article  Google Scholar 

  • Hopkins R, Miola J, Setterlund R et al (2006) The silicon oscillating accelerometer: a high performance MEMS accelerometer for precision navigation and strategic guidance applications. Draper Technol Dig 10:4–13

    Google Scholar 

  • Kim HC, Seok S, Kim I, et al. (2005) Inertial-grade out-of-plane and in-plane differential resonant silicon accelerometers (DRXLS). In: Solid-state sensors, actuators and microsystems, transduer’05, vol 1, pp 172–175. doi:10.1109/SENSOR.2005.1496386

  • Lee JEY, Bahreyni B, Seshia AA (2008) An axial strain modulated double-ended tuning fork electrometer. Sens Actuators A 148:395–400. doi:10.1016/j.sna.2008.09.010

    Article  Google Scholar 

  • Li QF, Fan SC, Tang ZY, Xing WW (2012) Non-linear dynamics of an electrothermally excited resonant pressure sensor. Sens Actuators A 188:15–28. doi:10.1016/j.sna.2012.01.006

    Google Scholar 

  • Masako T (2007) An industrial and applied review of new MEMS devices features. Microelectron Eng 84:1341–1344. doi:10.1016/j.mee.2007.01.232

    Article  Google Scholar 

  • Mawardi A, Pitchumani R (2008) Numerical simulations of an optical fiber drawing process under uncertainty. Lightwave Technol 26:580–587

    Article  Google Scholar 

  • Myers MR (1989) A model for unsteady analysis of preform drawing. AIChE J 35:592–602. doi:10.1002/aic.690350409

    Article  Google Scholar 

  • Padmanabhan SK, Pitchumani R (1999) Stochastic modeling of nonisothermal flow during resin transfer molding. Int J Heat Mass Transfer 42:3057–3070. doi:10.1016/S0017-9310(98)00377-9

    Article  MATH  Google Scholar 

  • Peng H, Zhang YW, Pai PF (2013) Uncertainty analysis of solid–liquid–vapor phase change of a metal particle subject to nanosecond laser heating. Manuf Sci Eng 135:021009. doi:10.1115/1.4023714

    Article  Google Scholar 

  • Seok S, Chun K (2006) Inertial-grade in-plane resonant silicon accelerometer. Electron Lett 42:1092–1093

    Article  Google Scholar 

  • Shi HC, Fan SC, Zhang YW et al (2014) Design and optimization based on uncertainty analysis in electro-thermal excited MEMS resonant sensor. Microsyst Technol 21:1–15. doi:10.1007/s00542-014-2109-8

    Google Scholar 

  • Su SXP, Yang HS, Agogino AM (2006) A resonant accelerometer with two-stage microleverage mechanisms fabricated by SOI-MEMS technology. IEEE Sens J 5:1214–1223. doi:10.1109/JSEN.2005.857876

    Article  Google Scholar 

  • Yu JC, Lan CB (2001) System modeling of microaccelerometer using piezo-electric thin film. Sens Actuators A 88:178–186. doi:10.1109/MFI.1999.815972

    Article  Google Scholar 

Download references

Acknowledgements

This study was supported by the Fundamental Research Funds for the Central Universities under grants number YZ620, Postdoctoral Science Foundation of China under Grants number 2016M591049.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huichao Shi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, H., Fan, S. & Li, W. Design and optimization of DETF resonator based on uncertainty analysis in a micro-accelerometer. Microsyst Technol 24, 2025–2034 (2018). https://doi.org/10.1007/s00542-017-3599-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3599-y

Navigation