Skip to main content
Log in

Dynamics and vibration analysis of suspended microchannel resonators based on strain gradient theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this paper, dynamics of a suspended microchannel resonator (SMR) will be derived using the strain gradient theory. Accordingly, the size dependent governing equation and corresponding boundary conditions will be obtained using the extended Hamilton’s principle for open systems. The proposed strain gradient theory has three length scale parameters which can be reduced to the modified couple stress theory and the classical theory when two of three length scale parameters or all of them are set to zero, respectively. Also, the size effect of micro-flow associated with the flow velocity profile will be considered in the governing equation of motion. The stability analysis is then carried out to obtain complex frequencies and critical flutter speeds. Finally, the effects of flowing particle in the microchannel and the associated frequency shifts induced by the added mass will be studied.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Atcı D, Bağdatlı SM (2017) Vibrations of fluid conveying microbeams under non-ideal boundary conditions. Microsyst Technol 23(10):4741–4752

    Article  Google Scholar 

  • Belardinelli P, Ghatkesar M, Staufer U, Alijani F (2017) Linear and non-linear vibrations of fluid-filled hollow microcantilevers interacting with small particles. Int J Non-Linear Mech 93:30–40

    Article  Google Scholar 

  • Benjamin TB (1962) Dynamics of a system of articulated pipes conveying fluid-I. Theory. In: Paper presented at the Proceedings of the Royal Society of London A

  • Burg TP, Godin M, Knudsen SM, Shen W, Carlson G, Foster JS, Manalis SR (2007) Weighing of biomolecules, single cells and single nanoparticles in fluid. Nature 446(7139):1066–1069

    Article  Google Scholar 

  • de Boer MP, Luck DL, Ashurst WR, Maboudian R, Corwin AD, Walraven JA, Redmond JM (2004) High-performance surface-micromachined inchworm actuator. J Microelectromech Syst 13(1):63–74

    Article  Google Scholar 

  • Fleck N, Hutchinson J (2001) A reformulation of strain gradient plasticity. J Mech Phys Solids 49(10):2245–2271

    Article  MATH  Google Scholar 

  • Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  • Gao Y, Bando Y (2002) Nanotechnology: carbon nanothermometer containing gallium. Nature 415(6872):599

    Article  Google Scholar 

  • Godin M, Bryan AK, Burg TP, Babcock K, Manalis SR (2007) Measuring the mass, density, and size of particles and cells using a suspended microchannel resonator. Appl Phys Lett 91(12):123121

    Article  Google Scholar 

  • Hosseini M, Bahaadini R (2016) Size dependent stability analysis of cantilever micro-pipes conveying fluid based on modified strain gradient theory. Int J Eng Sci 101:1–13

    Article  Google Scholar 

  • Hu K, Wang Y, Dai H, Wang L, Qian Q (2016) Nonlinear and chaotic vibrations of cantilevered micropipes conveying fluid based on modified couple stress theory. Int J Eng Sci 105:93–107

    Article  MathSciNet  Google Scholar 

  • Kazemi A, Vatankhah R, Farid M (2017) Nonlinear pull-in instability of microplates with piezoelectric layers using modified couple stress theory. Int J Mech Sci 130:90–98

    Article  Google Scholar 

  • Kong S, Zhou S, Nie Z, Wang K (2009) Static and dynamic analysis of micro beams based on strain gradient elasticity theory. Int J Eng Sci 47(4):487–498

    Article  MathSciNet  MATH  Google Scholar 

  • Lam DC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Lassagne B, Garcia-Sanchez D, Aguasca A, Bachtold A (2008) Ultrasensitive mass sensing with a nanotube electromechanical resonator. Nano Lett 8(11):3735–3738

    Article  Google Scholar 

  • Lee I, Park K, Lee J (2012) Note: Precision viscosity measurement using suspended microchannel resonators. Rev Sci Instrum 83(11):116106

    Article  Google Scholar 

  • Miandoab EM, Pishkenari HN, Yousefi-Koma A (2015) Dynamic analysis of electrostatically actuated nanobeam based on strain gradient theory. Int J Struct Stab Dyn 15(04):1450059

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11(1):415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Moser Y, Gijs MA (2007) Miniaturized flexible temperature sensor. J Microelectromech Syst 16(6):1349–1354

    Article  Google Scholar 

  • Paidoussis MP (1998) Fluid–structure interactions: slender structures and axial flow, vol 1. Academic Press, New York

    Google Scholar 

  • Rao SS (2007) Vibration of continuous systems. Wiley, New York

    Google Scholar 

  • Rinaldi S, Prabhakar S, Vengallatore S, Païdoussis MP (2010) Dynamics of microscale pipes containing internal fluid flow: damping, frequency shift, and stability. J Sound Vib 329(8):1081–1088

    Article  Google Scholar 

  • Vatankhah R, Kahrobaiyan MH (2016) Investigation of size-dependency in free-vibration of micro-resonators based on the strain gradient theory. Latin Am J Solids Struct 13(3):498–515

    Article  Google Scholar 

  • Wang L (2010) Size-dependent vibration characteristics of fluid-conveying microtubes. J Fluids Struct 26(4):675–684

    Article  Google Scholar 

  • Wang L, Liu H, Ni Q, Wu Y (2013) Flexural vibrations of microscale pipes conveying fluid by considering the size effects of micro-flow and micro-structure. Int J Eng Sci 71:92–101

    Article  MathSciNet  Google Scholar 

  • Yan H, Zhang W-M, Jiang H-M, Hu K-M, Hong F-J, Peng Z-K, Meng G (2017) A measurement criterion for accurate mass detection using vibrating suspended microchannel resonators. J Sound Vib 403:1–20

    Article  Google Scholar 

  • Yang F, Chong A, Lam DC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  • Yin L, Qian Q, Wang L (2011) Strain gradient beam model for dynamics of microscale pipes conveying fluid. Appl Math Model 35(6):2864–2873

    Article  MathSciNet  MATH  Google Scholar 

  • Yun M, Lee I, Jeon S, Lee J (2014) Facile phase transition measurements for nanogram level liquid samples using suspended microchannel resonators. IEEE Sens J 14(3):781–785

    Article  Google Scholar 

  • Zhang W-M, Yan H, Jiang H-M, Hu K-M, Peng Z-K, Meng G (2016) Dynamics of suspended microchannel resonators conveying opposite internal fluid flow: stability, frequency shift and energy dissipation. J Sound Vib 368:103–120

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Vatankhah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vakilzadeh, M., Vatankhah, R. & Eghtesad, M. Dynamics and vibration analysis of suspended microchannel resonators based on strain gradient theory. Microsyst Technol 24, 1995–2005 (2018). https://doi.org/10.1007/s00542-017-3596-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3596-1

Navigation