Microsystem Technologies

, Volume 24, Issue 1, pp 575–585 | Cite as

Wafer-level micropackaging in thin film technology for RF MEMS applications

  • A. Persano
  • P. Siciliano
  • F. Quaranta
  • A. Taurino
  • A. Lucibello
  • Romolo Marcelli
  • G. Capoccia
  • E. Proietti
  • A. Bagolini
  • J. Iannacci
Technical Paper


In this work, a thin-film packaging was developed to be used for radio-frequency microelectromechanical system configurations. The fabricated packages are suspended membranes in the multilayer SixNy/aSi/SixNy on conductive coplanar waveguides (CPWs) of different length. Several geometric parameters of the membranes, which are the length, the curvature radius at the vertices of the rectangular base, the density and the diameter of holes on the capping surface, were also varied. The mechanical properties of the suspended membranes were investigated by mechanical simulations and surface profilometry measurements as a function of the geometric parameters. RF characterization was performed to evaluate the impact of the package on the CPW performance. Finally, network analysis was carried out, allowing to clarify the origin of the RF losses measured for the fabricated microdevices.



This work has been partially supported by MIUR under Project 02876 “TASMA” of the National Operative Program (PON).


  1. Bansal D, Kumar A, Kumar P, Kaur M, Rangra K (2014) Comparison of packaging technologies for RF MEMS switch. Prog Electromagn Res M 38:123–131CrossRefGoogle Scholar
  2. Bartolucci G, Catoni S, Giacomozzi F, Marcelli R, Margesin B, Pochesci D (2007) Realisation of distributed RF MEMS phase shifter with very low number of switches. IEEE Electron Lett 43(23):1290–1292CrossRefGoogle Scholar
  3. Chakraborty A, Gupta B (2017) Paradigm phase shift: RF MEMS phase shifters: an overview. IEEE Microw Mag 18(1):22–41CrossRefGoogle Scholar
  4. Claassen WAP, Valkenburg WGJN, Willemsen MFC, van de Wijgert WM (1985) Influence of deposition temperature, gas pressure, gas phase composition, and RF frequency on composition and mechanical stress of plasma silicon nitride layers. J Electrochem Soc 132(4):893–898CrossRefGoogle Scholar
  5. De Angelis G, Lucibello A, Proietti E, Marcelli R, Bartolucci G, Casini F, Farinelli P, Mannocchi G, Di Nardo S, Pochesci D, Margesin B, Giacomozzi F, Vendier O, Kim T, Vietzorreck L (2012) RF MEMS ohmic switches for matrix configurations. Intern J Microw Wireless Technol 4(4):421–433CrossRefGoogle Scholar
  6. El Bouyadi O, Lamy Y, Dussopt L, Simon G (2016) 3D integration and packaging of mmwave circuits and antennas: opportunities and challenges. Microw J 59(2):22–34Google Scholar
  7. Farinelli P, Diaferia F, Deborgies F, Di Nardo S, Espana B, Lucibello A, Marcelli R, Margesin B, Giacomozzi F, Vietzorreck L, Vitulli F (2014) Compact 12 × 12 switch matrix integrating RF MEMS switches in LTCC hermetic packages. In: 2014 44th European microwave conference (EUMC). European microwave conference, pp 199–202Google Scholar
  8. Forehand DI, Goldsmith CL (2005) Wafer level micropackaging for RF MEMS switches. In: Proceedings of IPACK2005, ASME InterPack’05, San Francisco, California, USA, 17–22 JulyGoogle Scholar
  9. Green DS, Dohrman CL, Demmin J, Zheng Y, Chang T-H (2015) Heterogenous integration for revolutionary microwaves circuits at DARPA. Microw J 58(6):22–38Google Scholar
  10. Iannacci J (2013) Practical guide to RF-MEMS. Wiley-VCH, WeinheimCrossRefGoogle Scholar
  11. Iannacci J (2015) RF-MEMS: an enabling technology for modern wireless systems bearing a market potential still not fully displayed. Microsyst Technol 21(10):2039–2052CrossRefGoogle Scholar
  12. Iannacci J, Gaddi R, Gnudi A (2010) Experimental validation of mixed electromechanical and electromagnetic modeling of RF-MEMS devices within a standard IC simulation environment. IEEE J Microelectromech Syst 19(3):526–537CrossRefGoogle Scholar
  13. Jain A, Palit S, Alam MA (2012) A physics-based predictive modeling framework for dielectric charging and creep in RF MEMS capacitive switches and varactors. J Microelectromech Syst 21(2):420–430CrossRefGoogle Scholar
  14. Koutsoureli M, Michalas L, Papandreou E, Papaioannou G (2017) Dielectric charging asymmetry in SiN films used in RF MEMS capacitive switches. IEEE Trans Dev Mat Reliab 17(1):138–145CrossRefGoogle Scholar
  15. Leedy KD, Strawser RE, Cortez R, Ebel JL (2007) Thin-film encapsulated RF MEMS switches. J Microelectromech Syst 16(2):304–309CrossRefGoogle Scholar
  16. Lucibello A, Marcelli R, Proietti E, Bartolucci G, Mulloni V, Margesin B (2014) Reliability of RF MEMS capacitive and ohmic switches for space redundancy configurations. Microsyst Technol 21(9):1903–1913CrossRefGoogle Scholar
  17. Lucibello A, Capoccia G, Proietti E, Marcelli R, Margesin B, Mulloni V, Giacomozzi F, Vitulli F, Scipioni M, Bartolucci G (2015) Reliable response of RF MEMS LTCC packaged switches after mechanical and thermal stress. Microsyst Technol 22:495–501CrossRefGoogle Scholar
  18. Lucibello A, Marcelli R, Di Paola E, Di Nardo S, Pochesci D, Croci R, Germani C (2016) RF MEMS fabrication in LTCC technology. In: Proceedings of 2016 symposium on design, test, integration and packaging of MEMS/MOEMS (DTIP), Budapest, pp 188–192Google Scholar
  19. Lucyszyn S, Miyaguchi K, Robertson ID, Jiang HW (2008) Coupled-line RF MEMS filters for millimeter-wave applications. In: Proceedings of 2008 Asia Pacific microwave conference, Hong Kong, China, pp 2346–2349Google Scholar
  20. Marcelli R, Papaioannu G, Catoni S, De Angelis G, Lucibello A, Proietti E, Margesin B, Giacomozzi F, Deborgies F (2009) Dielectric charging in microwave microelectromechanical ohmic series and capacitive shunt switches. J Appl Phys 105(11):114514CrossRefGoogle Scholar
  21. Marcelli R, Lucibello A, De Angelis G, Proietti E, Comastri D (2010) Mechanical modelling of capacitive RF MEMS shunt switches. Microsyst Technol 16(7):1057–1064CrossRefGoogle Scholar
  22. Marcelli R, Comastri D, Lucibello A, De Angelis G, Proietti E, Bartolucci G (2012) Dynamics of RF micro-mechanical capacitive shunt switches in coplanar waveguide configuration. In: Nazmul I (ed) Microelectromechanical systems and devices. InTech Publisher, New York, pp 193–232Google Scholar
  23. Mardivirin D, Pothier A, Crunteanu A, Vialle B, Blondy P (2009) Charging in dielectricless capacitive RF-MEMS switches. IEEE Trans Microw Theory Technol 57(1):231–236CrossRefGoogle Scholar
  24. Mercier D, Van Caekenberghe K, Rebeiz GM (2005) Miniature RF MEMS switched capacitors. In: Microwave Symposium Digest, 2005 IEEE MTT-S International, pp 745–748Google Scholar
  25. Molinero D, Luo X, Shen C, Palego C, Hwang JCM, Goldsmith CL (2013) Long-term RF burn-in effects on dielectric charging of MEMS capacitive switches. IEEE Trans Dev Mat Reliab 13(1):310–315CrossRefGoogle Scholar
  26. Ouzillou M, Yu R (2014) Internet of things focus. Microw J 57(12):26–36Google Scholar
  27. Persano A, Tazzoli A, Farinelli P, Meneghesso G, Siciliano P, Quaranta F (2012) K-band capacitive MEMS switches on GaAs substrate: design, fabrication, and reliability. Microelectron Reliab 52:2245–2249CrossRefGoogle Scholar
  28. Persano A, Quaranta F, Martucci MC, Siciliano P, Cola A (2015) On the electrostatic actuation of capacitive RF MEMS switches on GaAs substrate. Sens Actuators A 232:202–207CrossRefGoogle Scholar
  29. Pham NP, Cherman V, Vandevelde B, Limaye P, Tutunjyan N, Jansen R, Van Hoovels N, Tezcan DS, Soussan P, Beyne E, Tilmans HAC (2011) Zero-level packaging for RF-MEMS implementing TSVs and metal bonding. In: Proceedings of the 2011 IEEE 61st electronic components and technology conference (ECTC), Lake Buena Vista, FL, USA, pp 1588–1595Google Scholar
  30. Rebeiz G (2003) RF MEMS theory, design, and technology. Wiley-Interscience, New YorkGoogle Scholar
  31. Rebeiz G, Tan G-L, Hayden JS (2002) RF MEMS phase shifters: design and applications. IEEE Microw Mag 3(2):72–81CrossRefGoogle Scholar
  32. Shojaei-Asanjan D, Mansour RR (2017) The sky’s the limit: a switchable RF-MEMS filter design for wireless avionics intracommunication. IEEE Microw Mag 18(1):100–106CrossRefGoogle Scholar
  33. Stefanini R, Chatras M, Pothier A, Guines C, Blondy P (2013) High-Q 3D tunable RF MEMS filter with a constant fractional bandwidth. In: Proceedings of 2013 European microwave integrated circuit conference, Nuremberg, Germany, pp 312–315Google Scholar
  34. Tilmans HAC, De Coster J, Helin P, Cherman V, Jourdain A, De Moor P, Vandevelde B, Pham NP, Zekry J, Witvrouw A, De Wolf I (2012) MEMS packaging and reliability: an undividable couple. Microelectron Reliab 52(9–10):2228–2234CrossRefGoogle Scholar
  35. Tummala RR, Rymaszewski EJ, Klopfenstein AG (1989) Microelectronics packaging handbook. Van Nostrand Reinhold, New YorkGoogle Scholar
  36. Zhang F, Shi L, Li C (2005) CPW transmission insertion loss on Si and SOI substrates. Microw J 48(11):138–142Google Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Institute for Microelectronics and Microsystems, IMM-CNR LecceLecceItaly
  2. 2.Institute for Microelectronics and Microsystems, IMM-CNR RomaRomeItaly
  3. 3.Fondazione Bruno Kessler, FBK, Center for Materials and Microsystems, CMMTrentoItaly

Personalised recommendations