Skip to main content
Log in

Nonlinear size-dependent pull-in instability and stress analysis of thin plate actuator based on enhanced continuum theories including nonlinear effects and surface energy

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In recent years, size dependent continuum theories have been commonly used to simulate material discontinuities in micro/nano-scales. In the present article, modified strain gradient theory (MSGT) and Gurtin–Murdoch surface elasticity, are used to investigate the size-dependent nonlinear pull-in instability and conduct a stress analysis of thin microplates. This paper modifies the classical equations and surface elasticity theory as a non-classical method which is able to account for the surface effect of nanomaterials with sufficient precision and lower calculation cost in comparison to atomic methods. The effects of van der Waals and Casimir forces are incorporated into the nonlinear governing equation of the system. A finite difference method (FDM) is employed to solve the nonlinear differential equation, and the pull-in parameters of the microplate are extracted. The effect of dispersion attractions and size-dependency on instability as well as the importance of the coupling between them is discussed. The most common types of thin-plates, including fully-clamped, simply-supported, and plates with mixed boundary conditions, are investigated. It is found that the significant difference between the pull-in instability parameters in the MSGT and the classical theory for thin microplates is merely due to the consideration of the size effect parameter in the modified strain gradient theory. The effect of surface/interface is also accounted for in the numerical FDM approach. Then, the stress analysis of the microplate is studied numerically by examining the surface/interface effect on the microplate with a square/rectangular section. The results obtained through this numerical method are plotted graphically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Altan S, Aifantis E (1992) On the structure of the mode III crack-tip in gradient elasticity. Scr Metall Mater 26:319–324

    Article  Google Scholar 

  • Ansari R, Gholami R (2016) Size-dependent modeling of the free vibration characteristics of postbuckled third-order shear deformable rectangular nanoplates based on the surface stress elasticity theory. Compos B Eng 95:301–316

    Article  Google Scholar 

  • Ansari R, Mohammadi V, Shojaei MF, Gholami R, Darabi M (2014) A geometrically non-linear plate model including surface stress effect for the pull-in instability analysis of rectangular nanoplates under hydrostatic and electrostatic actuations. Int J Non-Linear Mech 67:16–26

    Article  Google Scholar 

  • Ansari R, Ashrafi M, Pourashraf T, Sahmani S (2015) Vibration and buckling characteristics of functionally graded nanoplates subjected to thermal loading based on surface elasticity theory. Acta Astronaut 109:42–51

    Article  Google Scholar 

  • Asghari M (2012) Geometrically nonlinear micro-plate formulation based on the modified couple stress theory int J. Eng Sci 51:292–309

    Article  MathSciNet  Google Scholar 

  • Askari AR, Tahani M (2016) Stability analysis of electrostatically actuated nano/micro-beams under the effect of van der Waals force, a semi-analytical approach. Commun Nonlinear Sci Numer Simul 34:130–141

    Article  MathSciNet  Google Scholar 

  • Assadi A, Farshi B, Alinia-Ziazi A (2010) Size dependent dynamic analysis of nanoplates. J Appl Phys 107:124310

    Article  Google Scholar 

  • Beni YT, Karimipöur I, Abadyan M (2014) Modeling the effect of intermolecular force on the size-dependent pull-in behavior of beam-type NEMS using modified couple stress theory. J Mech Sci Technol 28:3749–3757

    Article  Google Scholar 

  • Beni YT, Karimipour I, Abadyan M (2015) Modeling the instability of electrostatic nano-bridges and nano-cantilevers using modified strain gradient theory. Appl Math Model 39:2633–2648

    Article  MathSciNet  Google Scholar 

  • Chapra SC, Canale RP (1998) Numerical methods for engineers, vol 2. McGraw-Hill, New York

    Google Scholar 

  • Cosserat E, Cosserat F (1909) Théorie des corps déformables. Herman et fils, Paris

  • Dolicanin C, Nikolic V, Dolicanin D (2010) Application of finite difference method to study of the phenomenon in the theory of thin plates. Appl Math Inform Mech 2:1

    Google Scholar 

  • Eringen AC (2012) Microcontinuum field theories: I. Foundations and solids. Springer, New York

    MATH  Google Scholar 

  • Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10:233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Exadaktylos GE, Vardoulakis I (2007) Bifurcations, instabilities, degradation in geomechanics. Springer, New York

    Book  MATH  Google Scholar 

  • Ezeh J, Ibearugbulem O, Onyechere C (2013) Pure bending analysis of thin rectangular flat plates using ordinary finite difference method. Int J Emerg Technol Adv Eng 3:20–23

    Google Scholar 

  • Fatikow S, Rembold U (2013) Microsystem technology and microrobotics. Springer, New York

    MATH  Google Scholar 

  • Fleck N, Muller G, Ashby M, Hutchinson J (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Francais O, Dufour I (1999) Normalized abacus for the global behavior of diaphragms: pneumatic, electrostatic, piezoelectric or electromagnetic actuation. J Model Simul Microsyst 2:149–160

    Google Scholar 

  • Gao X-L, Mahmoud F (2014) A new Bernoulli–Euler beam model incorporating microstructure and surface energy effects. Z Angew Math Phys 65:393–404

    Article  MathSciNet  MATH  Google Scholar 

  • Gibbs J (1928) Collected works, vol 2. Longmans, Green, New York

  • Gourgiotis P, Georgiadis H (2007) Distributed dislocation approach for cracks in couple-stress elasticity: shear modes. Int J Fract 147:83–102

    Article  MATH  Google Scholar 

  • Gurtin ME, Ian Murdoch A (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57:291–323

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14:431–440

    Article  MATH  Google Scholar 

  • Hamilton J, Wolfer W (2009) Theories of surface elasticity for nanoscale objects. Surf Sci 603:1284–1291

    Article  Google Scholar 

  • He J, Lilley CM (2008) Surface stress effect on bending resonance of nanowires with different boundary conditions. Appl Phys Lett 93:263108

    Article  Google Scholar 

  • Jomehzadeh E, Saidi A (2011) A study on large amplitude vibration of multilayered graphene sheets computational materials science 50:1043–1051

    Google Scholar 

  • Jomehzadeh E, Noori H, Saidi A (2011) The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Physica E 43:877–883

    Article  Google Scholar 

  • Karimipour I, Fotuhi AR (2017) Anti-plane analysis of an infinite plane with multiple cracks based on strain gradient theory. Acta Mech 228:1793–1817

    Article  MathSciNet  MATH  Google Scholar 

  • Karimipour I, Kanani A, Koochi A, Keivani M, Abadyan M (2015) Modeling the electromechanical behavior and instability threshold of NEMS bridge in electrolyte considering the size dependency and dispersion forces. Physica E 74:140–150

    Article  Google Scholar 

  • Karimipour I, Beni YT, Koochi A, Abadyan M (2016a) Using couple stress theory for modeling the size-dependent instability of double-sided beam-type nanoactuators in the presence of Casimir force. J Braz Soc Mech Sci Eng 38:1779–1795

    Article  Google Scholar 

  • Karimipour I, Kanani A, Koochi A, Keivani M, Abadyan M (2016b) Electromechanical instability of nanobridge in ionic liquid electrolyte media: influence of electrical double layer, dispersion forces and size effect. Indian J Phys 90:563–575

    Article  Google Scholar 

  • Ke L, Xiang Y, Yang J, Kitipornchai S (2009) Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory. Comput Mater Sci 47:409–417

    Article  Google Scholar 

  • Ke LL, Wang YS, Yang J, Kitipornchai S (2012a) Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory. J Sound Vib 331:94–106

    Article  Google Scholar 

  • Ke LL, Yang J, Kitipornchai S, Bradford MA (2012b) Bending, buckling and vibration of size-dependent functionally graded annular microplates. Compos Struct 94:3250–3257

    Article  Google Scholar 

  • Khosrozadeh A, Hajabasi M (2012) Free vibration of embedded double-walled carbon nanotubes considering nonlinear interlayer van der Waals forces. Appl Math Model 36:997–1007

    Article  MathSciNet  MATH  Google Scholar 

  • Lam DC, Yang F, Chong A, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Lazopoulos K (2009) On bending of strain gradient elastic micro-plates. Mech Res Commun 36:777–783

    Article  MathSciNet  MATH  Google Scholar 

  • Liu C, Rajapakse R (2010) Continuum models incorporating surface energy for static and dynamic response of nanoscale beams. IEEE Trans Nanotechnol 9:422–431

    Article  Google Scholar 

  • Lu P, He L, Lee H, Lu C (2006) Thin plate theory including surface effects. Int J Solids Struct 43:4631–4647

    Article  MATH  Google Scholar 

  • Lü C, Chen W, Lim CW (2009) Elastic mechanical behavior of nano-scaled FGM films incorporating surface energies. Compos Sci Technol 69:1124–1130

    Article  Google Scholar 

  • Malekzadeh P, Haghighi MG, Shojaee M (2014) Nonlinear free vibration of skew nanoplates with surface and small scale effects. Thin-Walled Struct 78:48–56

    Article  Google Scholar 

  • McFarland AW, Colton JS (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060

    Article  Google Scholar 

  • Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11:139

    Article  Google Scholar 

  • Mindlin R (1963) Influence of couple-stresses on stress concentrations. Exp Mech 3:1–7

    Article  Google Scholar 

  • Mindlin RD (1964) Micro-structure in linear elasticity. Arch Ration Mech Anal 16:51–78

    Article  MathSciNet  MATH  Google Scholar 

  • Mindlin R, Tiersten H (1962) Effects of couple-stresses in linear elasticity. Arch Ration Mech Anal 11:415–448

    Article  MathSciNet  MATH  Google Scholar 

  • Movassagh AA, Mahmoodi M (2013) A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur J Mech A/Solids 40:50–59

    Article  MathSciNet  Google Scholar 

  • Ng T, Jiang T, Li H, Lam K, Reddy J (2004) A coupled field study on the non-linear dynamic characteristics of an electrostatic micropump. J Sound Vib 273:989–1006

    Article  Google Scholar 

  • Nix WD, Gao H (1998) An atomistic interpretation of interface stress. Scr Mater 39:1653–1661

    Article  Google Scholar 

  • Papargyri-Beskou S, Beskos D (2008) Static, stability and dynamic analysis of gradient elastic flexural Kirchhoff plates. Arch Appl Mech 78:625–635

    Article  MATH  Google Scholar 

  • Papargyri-Beskou S, Tsepoura K, Polyzos D, Beskos D (2003) Bending and stability analysis of gradient elastic beams. Int J Solids Struct 40:385–400

    Article  MATH  Google Scholar 

  • Pelesko JA, Bernstein DH (2002) Modeling MEMS and NEMS. CRC Press, London

    Book  MATH  Google Scholar 

  • Qian J, Liu C, Zhang DC, Zhao YP (2001) Residual stresses in micro-electro-mechanical system. J Mech Strength 23:393–401

    Google Scholar 

  • Rafii-Tabar H, Shodja H, Darabi M, Dahi A (2006) Molecular dynamics simulation of crack propagation in FCC materials containing clusters of impurities. Mech Mater 38:243–252

    Article  Google Scholar 

  • Ramezani S, Naghdabadi R (2007) Energy pairs in the micropolar continuum. Int J Solids Struct 44:4810–4818

    Article  MATH  Google Scholar 

  • Ramezani S, Naghdabadi R, Sohrabpour S (2009) Analysis of micropolar elastic beams. Eur J Mech A/Solids 28:202–208

    Article  MATH  Google Scholar 

  • Reddy JN (2002) Energy principles and variational methods in applied mechanics. Wiley, New York

    Google Scholar 

  • Reddy JN (2007) Theory and analysis of elastic plates and shells, 2nd edn. Taylor & Francis, Philadelphia

    Google Scholar 

  • Rezazadeh G, Fathalilou M, Shabani R, Tarverdilou S, Talebian S (2009) Dynamic characteristics and forced response of an electrostatically-actuated microbeam subjected to fluid loading. Microsyst Technol 15:1355–1363

    Article  Google Scholar 

  • Ru C, Aifantis E (1993) A simple approach to solve boundary-value problems in gradient elasticity. Acta Mech 101:59–68

    Article  MathSciNet  MATH  Google Scholar 

  • Shaat M, Abdelkefi A (2016) Size dependent and micromechanical modeling of strain gradient-based nanoparticle composite plates with surface elasticity. Eur J Mech A/Solids 58:54–68

    Article  MathSciNet  Google Scholar 

  • Shaat M, Mahmoud F, Alshorbagy A, Alieldin S (2013) Bending analysis of ultra-thin functionally graded Mindlin plates incorporating surface energy effects. Int J Mech Sci 75:223–232

    Article  MATH  Google Scholar 

  • Shaat M, Mahmoud F, Gao X-L, Faheem AF (2014) Size-dependent bending analysis of Kirchhoff nano-plates based on a modified couple-stress theory including surface effects. Int J Mech Sci 79:31–37

    Article  Google Scholar 

  • Shenoy VB (2005) Atomistic calculations of elastic properties of metallic FCC crystal surfaces. Phys Rev B 71:094104

    Article  Google Scholar 

  • Shojaeian M, Beni YT, Ataei H (2016) Size-dependent snap-through and pull-in instabilities of initially curved pre-stressed electrostatic nano-bridges. J Phys D Appl Phys 49(29):295303

    Article  Google Scholar 

  • Shuttleworth R (1950) The surface tension of solids. Proc Phys Soc Sect A 63:444

    Article  Google Scholar 

  • Stölken J, Evans A (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  • Tahani M, Askari AR, Mohandes Y, Hassani B (2015) Size-dependent free vibration analysis of electrostatically pre-deformed rectangular micro-plates based on the modified couple stress theory. Int J Mech Sci 94:185–198

    Article  Google Scholar 

  • Thai HT, Choi DH (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153

    Article  Google Scholar 

  • Thai HT, Kim SE (2013) A size-dependent functionally graded Reddy plate model based on a modified couple stress theory. Compos Part B Eng 45:1636–1645

    Article  Google Scholar 

  • Timoshenko SP, Woinowsky-Krieger S (1959) Theory of plates and shells. McGraw-hill, New York

    MATH  Google Scholar 

  • Tsiatas GC (2009) A new Kirchhoff plate model based on a modified couple stress theory. Int J Solids Struct 46:2757–2764

    Article  MATH  Google Scholar 

  • Wang B, Zhou S, Zhao J, Chen X (2011) A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur J Mech A/Solids 30:517–524

    Article  MATH  Google Scholar 

  • Yang F, Chong A, Lam DC, Tong P (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39:2731–2743

    Article  MATH  Google Scholar 

  • Ying J, Lü C, Chen W (2008) Two-dimensional elasticity solutions for functionally graded beams resting on elastic foundations. Compos Struct 84:209–219

    Article  Google Scholar 

  • Yue Y, Ru C, Xu K (2017) Modified von Kármán equations for elastic nanoplates with surface tension and surface elasticity. Int J Non-Linear Mech 88:67–73

    Article  Google Scholar 

  • Zeighampour H, Beni YT (2015) A shear deformable cylindrical shell model based on couple stress theory. Arch Appl Mech 85:539–553

    Article  MATH  Google Scholar 

  • Zhang B, He Y, Liu D, Gan Z, Shen L (2013) A non-classical Mindlin plate finite element based on a modified couple stress theory. Eur J Mech A/Solid 42:63–80

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaghoub Tadi Beni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimipour, I., Beni, Y.T. & Zeighampour, H. Nonlinear size-dependent pull-in instability and stress analysis of thin plate actuator based on enhanced continuum theories including nonlinear effects and surface energy. Microsyst Technol 24, 1811–1839 (2018). https://doi.org/10.1007/s00542-017-3540-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3540-4

Navigation