Skip to main content
Log in

A thermodynamic study of voiding phenomena in Cu–Cu thermo-compression wafer bonding

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The influence of wafer bonding and post-bond annealing conditions on the (cavity) void size and distribution was investigated theoretically and verified experimentally. Based on Cu–Cu thermo-compression bonding at 175 °C for 30 min and subsequent annealing at 200 °C for 1, 6 and 24 h, respectively, in both cases the total void surface reduces with the duration of the heat treatment, showing good correlation between theory and experiment. However, the experimental results revealed that the average void size increases while voids number decreases, which is a deviation from the prediction of the physical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Aoki M, Hozawa K, Takeda K (2010) Presented at IEEE International 3D Systems Integration Conference 3DIC in Munich

  • Baum M, Hofmann L, Wiemer M, Schulz S, Gessner T (2013) Presented at International Semiconductor Conference Dresden-Grenoble ISCDG in Dresden

  • Gondcharton P, Imbert B, Benaissa L, Verdier M (2014) Voiding phenomena in copper-copper bonded structures: role of creep. ECS Trans 64(5):357–367

    Article  Google Scholar 

  • Lhostis S, Farcy A, Deloffre E, Lorut F et al. (2016) Presented at Electronic Components and Technology Conference ECTC in Las Vegas

  • Lifshitz IM, Slyozov VV (1961) The kinetics of precipitation from supersaturated solid solutions. J Phys Chem Solids 19(1–2):35–50

    Article  Google Scholar 

  • Malik N, Schjølberg-Henriksen K, Poppe E, Visser Taklo MM, Finstad TG (2014) Al Al thermocompression bonding for wafer-level MEMS sealing. Sensor Actuat A Phys 211:115–120

    Article  Google Scholar 

  • Martinez M, Legros M, Signamarcheix T, Bally L, Verrun S, Di Cioccio L, Deguet C (2013) Mechanisms of copper direct bonding observed by in-situ and quantitative transmission electron microscopy. Thin Solid Films 530:96–99

    Article  Google Scholar 

  • Mehrer H (Ed) (1990) Landolt-Börnstein 26, diffusion in solid metals and alloys. Springer, Berlin, Sect. 12.2.1, p 641

  • Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer, New York, 654p

    Book  Google Scholar 

  • Razavi-Tousi SS, Yazdani-Rad R, Manafi SA (2012) A model for abnormal grain growth in nano-crystalline materials based on zener drag force. Arch Metall Mater 57(1):79

    Article  Google Scholar 

  • Rebhan B, Hingerl K (2015) Physical mechanisms of copper-copper wafer bonding. J Appl Phys 118:135301

    Article  Google Scholar 

  • Rebhan B, Hesser G, Duchoslav J, Dragoi V, Wimplinger M, Hingerl K (2012) Low-temperature Cu-Cu wafer bonding. ECS Trans 50:139

    Article  Google Scholar 

  • Svoboda J, Fischer FD (2014) Abnormal grain growth: a non-equilibrium thermodynamic model for multi-grain binary systems. Model Simul Mater Sci Eng 22:015013-1–015013-15

    Google Scholar 

  • Svoboda J, Fischer FD, Fratzl P (2006) Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies. Acta Mat 54(11):3043–3053

    Article  Google Scholar 

  • Tan CS, Reif R, Theodore ND, Pozder S (2005) Observation of interfacial void formation in bonded copper layers. Appl Phys Lett 87:201909

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Rebhan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rebhan, B., Svoboda, J. & Panholzer, M. A thermodynamic study of voiding phenomena in Cu–Cu thermo-compression wafer bonding. Microsyst Technol 24, 815–822 (2018). https://doi.org/10.1007/s00542-017-3523-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3523-5

Navigation