Mixing performance of split-and-recombine micromixer with offset inlets

Abstract

This study proposes a novel 3D split-and-recombine passive micromixer with offset-inlets. The micromixer is composed of non-aligned inlets and spatially repeating mixing units with mixing chambers and sub-channels. Each repeating unit has a chamber and two sub-channels with a number of alternate bends to create chaos in the flow. The non-aligned inlets provide inlet swirl while split-and-recombine mixing units stretch interfacial area, which eventually enhance mixing efficiency of the micromixer. The numerical modeling was conducted by solving three-dimensional steady state flow equations along with the diffusion equation for several flow conditions to evaluate the parametric mixing performance. A variance-based mixing index was used to compute the degree of mixing. A characterization methodology was employed to demonstrate the effect of several design parameters, i.e., width and depth of the mixing channel, pitch, length and height of the mixing chamber on the performance. The proposed micromixer exhibited excellent performance over a wide range of Reynolds numbers covered in the present study. At low and medium Re, proposed micromixer performed much better than 3D serpentine and 3D serpentine SAR micromixers reported in the recent literature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

References

  1. Afzal A, Kim KY (2012) Passive split and recombination micromixer with convergent-divergent walls. Chem Eng J 203:182–192. doi:10.1016/j.cej.2012.06.111

    Article  Google Scholar 

  2. Al-Halhouli A, Alshare A, Mohsen M et al (2015) Passive micromixers with interlocking semi-circle and omega-shaped modules: experiments and simulations. Micromachines 6:953–968. doi:10.3390/mi6070953

    Article  Google Scholar 

  3. Ansari MA, Kim KY (2007) Shape optimization of a micromixer with staggered herringbone groove. Chem Eng Sci 62:6687–6695. doi:10.1016/j.ces.2007.07.059

    Article  Google Scholar 

  4. Ansari MA, Kim KY (2009) Parametric study on mixing of two fluids in a three-dimensional serpentine microchannel. Chem Eng J 146:439–448. doi:10.1016/j.cej.2008.10.006

    Article  Google Scholar 

  5. Ansari MA, Kim K-Y, Anwar K, Kim SM (2010) A novel passive micromixer based on unbalanced splits and collisions of fluid streams. J Micromechanics Microengineering 20:55007. doi:10.1088/0960-1317/20/5/055007

    Article  Google Scholar 

  6. Ansari MA, Kim KY, Anwar K, Kim SM (2012) Vortex micro T-mixer with non-aligned inputs. Chem Eng J 181–182:846–850. doi:10.1016/j.cej.2011.11.113

    Article  Google Scholar 

  7. ANSYS Inc. (2013a) ANSYS ICEM CFD-Theory Guide

  8. ANSYS Inc. (2013b) ANSYS CFX-Solver Theory Guide:724–746

  9. Aubin J, Fletcher DF, Xuereb C (2005) Design of micromixers using CFD modelling. Chem Eng Sci 60:2503–2516. doi:10.1016/j.ces.2004.11.043

    Article  Google Scholar 

  10. Bessoth FG, deMello AJ, Manz A (1999) Microstructure for efficient continuous flow mixing. Anal Commun 36:213–215. doi:10.1039/a902237f

    Article  Google Scholar 

  11. Bird RB, Stewart WE, Lightfoot EN (2007) Transport Phenomena. Wiley

  12. Chen C-H (2009) Recent patents on micromixing technology and micromixers. Recent Patents Mech Eng 2:240–247. doi:10.2174/2212797610902030240

    Article  Google Scholar 

  13. Chen X, Shen J (2016) Numerical and experimental investigation on splitting-and-recombination micromixer with E-shape mixing units. Microsyst Technol. doi:10.1007/s00542-016-3208-5

    Google Scholar 

  14. Chen X, Shen J (2017) International Journal of Heat and Mass Transfer Numerical analysis of mixing behaviors of two types of E-shape micromixers. Int J Heat Mass Transf 106:593–600. doi:10.1016/j.ijheatmasstransfer.2016.09.034

    Article  Google Scholar 

  15. Chen X, Li T, Hu Z (2016) A novel research on serpentine microchannels of passive micromixers. Microsyst Technol. doi:10.1007/s00542-016-3060-7

    Google Scholar 

  16. Ehrfeld W, Golbig K, Hessel V et al (1999) Characterization of mixing in micromixers by a test reaction: single mixing units and mixer arrays. Ind Eng Chem Res 38:1075–1082. doi:10.1021/ie980128d

    Article  Google Scholar 

  17. Hessel V, Löwe H (2003) Microchemical engineering: components, plant concepts, user acceptance—part II. Chem Eng Technol 26:391–408. doi:10.1002/ceat.200390060

    Article  Google Scholar 

  18. Hirata Y, Ohkawa K (2016) Development of channel mixers utilising 180° fluid rotation combined with split and recombination. Chem Eng Res Des 108:118–125. doi:10.1016/j.cherd.2015.10.036

    Article  Google Scholar 

  19. Hossain S, Kim K (2015) Mixing analysis in a three-dimensional serpentine split-and-recombine micromixer. Chem Eng Res Des. doi:10.1016/j.cherd.2015.05.011

    Google Scholar 

  20. Kim DS, Lee SH, Kwon TH, Ahn CH (2005) A serpentine laminating micromixer combining splitting/recombination and advection. Lab Chip 5:739–747. doi:10.1039/b418314b

    Article  Google Scholar 

  21. Lee CY, Wang WT, Liu CC, Fu LM (2016) Passive mixers in microfluidic systems: a review. Chem Eng J 288:146–160. doi:10.1016/j.cej.2015.10.122

    Article  Google Scholar 

  22. Lin Y, Yu X, Wang Z et al (2011) Design and evaluation of an easily fabricated micromixer with three-dimensional periodic perturbation. Chem Eng J 171:291–300. doi:10.1016/j.cej.2011.04.003

    Article  Google Scholar 

  23. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromechanics Microengineering 15:R1–R16. doi:10.1088/0960-1317/15/2/R01

    Article  Google Scholar 

  24. Ruijin W, Beiqi L, Dongdong S, Zefei Z (2017) Investigation on the splitting-merging passive micromixer based on Baker’s transformation. Sensors Actuators B Chem 249:395–404. doi:10.1016/j.snb.2017.04.087

    Article  Google Scholar 

  25. Stroock AD, Dertinger SKW, Ajdari A et al (2002) Chaotic mixer for microchannels. Science 295:647–651. doi:10.1126/science.1066238

    Article  Google Scholar 

  26. The Le H, Thanh Le H, Dong T et al (2015) An effective passive micromixer with shifted trapezoidal blades using wide Reynolds number range. Chem Eng Res Des 93:1–11. doi:10.1016/j.cherd.2014.12.003

    Article  Google Scholar 

  27. Tofteberg T, Skolimowski M, Andreassen E, Geschke O (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluidics 8:209–215. doi:10.1007/s10404-009-0456-z

    Article  Google Scholar 

  28. Viktorov V, Mahmud M, Visconte C (2015) Comparative analysis of passive micromixers at a wide range of Reynolds numbers. Micromachines 6:1166–1179. doi:10.3390/mi6081166

    Article  Google Scholar 

  29. Yang JT, Fang WF, Tung KY (2008) Fluids mixing in devices with connected-groove channels. Chem Eng Sci 63:1871–1881. doi:10.1016/j.ces.2007.12.027

    Article  Google Scholar 

  30. Yoo W-S, Go JS, Park S, Park S-H (2012) A novel effective micromixer having horizontal and vertical weaving flow motion. J Micromechanics Microengineering 22:5007. doi:10.1088/0960-1317/22/3/035007

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of Sultan Qaboos University through Collaborative Research Grant (CL/SQU-UAEU/15/02).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Afzal Husain.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Husain, A., Khan, F.A., Huda, N. et al. Mixing performance of split-and-recombine micromixer with offset inlets. Microsyst Technol 24, 1511–1523 (2018). https://doi.org/10.1007/s00542-017-3516-4

Download citation