Skip to main content
Log in

Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

In this work, we have investigated the integration of an electroosmotic micropump allowing to generate droplets in two parallel flow focusing junctions. A novel design of the electroosmotic micropump with low voltage is proposed, acting as an active fluidic control to produce droplets of water-in-oil. Numerical studies are performed both on the micropump and the oil flow rate of the continuous phase. The simulations are conducted in terms of size and frequency of droplets issued from the device. Several ranges of applied voltage were applied to the micropump (2, 3.6, 5, and 10 V) for each oil flow rate value varying from 0.75 to 5.5 µl/min. Contrary to the pneumatic, piezoelectric or mechanical micropump, this integrated electroosmotic micropump is a versatile droplet generator allowing it to be used in microfluidic system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Barman U, Sen AK, Mishra SC (2014) Theoretical and numerical investigations of an electroosmotic flow micropump with interdigitated electrodes. Microsyst Technol 20:157. doi:10.1007/s00542-013-1893-x

    Article  Google Scholar 

  • Baroud CN, Gallaire F, Dangla R (2010) Dynamics of microfluidic droplets. Lab Chip 10:2032–2045. doi:10.1039/C001191F

    Article  Google Scholar 

  • Collins DJ, Neild A, Liu AQ, Ai Y (2015) The Poisson distribution and beyond: methods for microfluidic droplet production and single cell encapsulation. Lab Chip 15:3439–3459. doi:10.1039/c5lc00614g

    Article  Google Scholar 

  • Fang WF, Lee AP (2015) LCAT pump optimization for an integrated microfluidic droplet generator. Microfluid Nanofluid 18:1265–1275. doi:10.1007/s10404-014-1525-5

    Article  Google Scholar 

  • Gallah N, Besbes K (2016) Electroosmotic micropump analysis for lab on chip water quality monitoring. In: 13th International Multi-Conference on Systems, Signals & Devices, Leipzig, Germany, March 2016, pp 330–335

  • Herranz-Blanco B, Arriaga LR, Mäkilä E, Correia A, Shrestha N, Mirza S, Weitz DA, Salonen J, Santos HA (2014) Microfluidic assembly of multistage porous silicon–lipid vesicles for controlled drug release. Lab Chip 14:1083–1086. doi:10.1039/C3LC51260F

    Article  Google Scholar 

  • Korczyk PM, Cybulski O, Makulska S, Garstecki P (2011) Effects of unsteadiness of the rates of flow on the dynamics of formation of droplets in microfluidic systems. Lab Chip 11:173–175. doi:10.1039/C0LC00088D

    Article  Google Scholar 

  • Leester-Schädel M, Lorenz T, Jürgens F, Richter C (2016) Fabrication of microfluidic devices. Microsyst Pharmatechnol. doi:10.1007/978-3-319-26920-7_2

    Google Scholar 

  • Li X, Li D, Liu X, Chang H (2016) Ultra-monodisperse droplet formation using PMMA microchannels integrated with low-pulsation electrolysis micropumps. Sens Actuators B 229:466–475

    Article  Google Scholar 

  • Nightingale AM, Phillips TW, Bannock JH, de Mello JC (2014) Controlled multistep synthesis in a three-phase droplet reactor. Nat com. doi:10.1038/ncomms4777

    Google Scholar 

  • Olsson E, Kreiss G (2005) A conservative level set method for two phase flow. J Comput Phys 210:225–246

    Article  MATH  MathSciNet  Google Scholar 

  • Parker B, Samanipour R, Ahmadi A, Kim K (2016) Rapid fabrication of circular channel microfluidic flow-focusing devices for hydrogel droplet generation. IET Micro Nano Lett 11:41–45. doi:10.1049/mnl.2015.0329

    Article  Google Scholar 

  • Tsao CW, Chen KS, Hwang FN (2015) Numerical simulation of droplet-based microfluidic chip interfacing with laser desorption/ionisation mass spectrometry target substrate. IET Micro Nano Lett 10:192–197. doi:10.1049/mnl.2014.0300

    Article  Google Scholar 

  • Zeng Y, Shin M, Wang T (2013) Programmable active droplet generation enabled by integrated pneumatic micropumps. Lab Chip 13:267–273. doi:10.1039/C2LC40906B

    Article  Google Scholar 

  • Zhou J, Ren K, Dai W, Zhao Y, Ryan D, Wu H (2011) Pumping-induced perturbation of flow in microfluidic channels and its implications for on-chip cell culture. Lab Chip 11:2288–2294. doi:10.1039/C0LC00466A

    Article  Google Scholar 

  • Ziemecka I, van Steijn V, Koper GJ, Rosso M, Brizard AM, van Esch JH, Kreutzer MT (2011) Monodisperse hydrogel microspheres by forced droplet formation in aqueous two-phase systems. Lab Chip 11:620–624. doi:10.1039/C0LC0037

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Gallah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gallah, N., Habbachi, N. & Besbes, K. Design and modelling of droplet based microfluidic system enabled by electroosmotic micropump. Microsyst Technol 23, 5781–5787 (2017). https://doi.org/10.1007/s00542-017-3414-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3414-9

Keywords

Navigation