Microsystem Technologies

, Volume 24, Issue 1, pp 465–472 | Cite as

Design optimization for an SOI MOEMS accelerometer

Technical Paper

Abstract

With optimization being vital, the design optimization of a silicon-on-insulator (SOI) micro-opto-electro-mechanical systems accelerometer is discussed in this paper. This process has enabled a simplistic design that employs double-sided deep reactive ion etching (DRIE) on SOI wafer to be able to attain high sensitivity of 294 µW/G with a calculated proof mass displacement of 0.066 µm/G which was close to ANSYS simulated results of 0.061 µm/G. Optimization has also enabled an in-depth study of the effects of the different variables on the overall performance of the device.

Notes

Acknowledgements

This research was supported by Nanyang Technological University and Temasek Lab@NTU TDP.

References

  1. Bhansali S, Vasudev A (2012) MEMS for biomedical applications. Elsevier, AmsterdamCrossRefGoogle Scholar
  2. Bochobza-Degani O, Yechieli R, Bar-Lev S, Yehuda UB, Nemirovsky Y (2003) Characterization of a novel micromachined accelerometer with enhanced-MIDOS. In: TRANSDUCERS, solid-state sensors, actuators and microsystems, 12th international conference on, 2003. IEEE, pp 1395–1398Google Scholar
  3. Borinski JW, Boyd CD, Dietz JA, Duke JC, Home MR (2001) Fiber optic sensors for predictive health monitoring. In: AUTOTESTCON Proceedings, 2001. IEEE systems readiness technology conference, 2001. pp 250–262. doi: 10.1109/autest.2001.948969
  4. Bose S, Keller SS, Alstrøm TS, Boisen A, Almdal K (2013) Process optimization of ultrasonic spray coating of polymer films. Langmuir 29:6911–6919CrossRefGoogle Scholar
  5. Choi W, Jeon Y, Jeong J-H, Sood R, Kim S-G (2006) Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceramics 17:543–548CrossRefGoogle Scholar
  6. da Costa Antunes PF et al (2009) Optical fiber accelerometer system for structural dynamic monitoring. Sens J IEEE 9:1347–1354. doi: 10.1109/jsen.2009.2026548 CrossRefGoogle Scholar
  7. Doyle C, Fernando GF (2000) Two-axis optical fiber acclerometer. J Mater Sci Lett 19:959–961. doi: 10.1023/a:1006764121038 CrossRefGoogle Scholar
  8. Gad-el-Hak M (2005) MEMS: introduction and fundamentals. CRC Press, Boca ratonMATHGoogle Scholar
  9. Huang J-M, Liew K, Wong C, Rajendran S, Tan M, Liu A (2001) Mechanical design and optimization of capacitive micromachined switch. Sens Actuators A Phys 93:273–285CrossRefGoogle Scholar
  10. Kelley TR (2010) Optimization, an important stage of engineering design. Technol Teach 69:18Google Scholar
  11. Krishnamoorthy U, Olsson Iii RH, Bogart GR, Baker MS, Carr DW, Swiler TP, Clews PJ (2008) In-plane MEMS-based nano-g accelerometer with sub-wavelength optical resonant sensor. Sens Actuators A Phys 145–146:283–290. doi: 10.1016/j.sna.2008.03.017 CrossRefGoogle Scholar
  12. Llobera A, Seidemann V, Plaza JA, Cadarso VJ, Buttgenbach S (2004) Surface quad beam polymer optical accelerometer. In: Sensors, 2004. Proceedings of IEEE, 24–27 Oct 2004, vol 1543. pp 1546–1549. doi: 10.1109/icsens.2004.1426484
  13. Loh NC, Schmidt MA, Manalis SR (2002) Sub-10 cm3 interferometric accelerometer with nano-g resolution. J Microelectromech Syst 11:182–187. doi: 10.1109/jmems.2002.1007396 CrossRefGoogle Scholar
  14. Mohammadi B, Pironneau O (2010) Applied shape optimization for fluids. Oxford University Press, OxfordMATHGoogle Scholar
  15. Papin G et al (2012) Optical actuation and detection of MEMS resonators: Behavioral modeling and phase noise simulations. In: Frequency control symposium (FCS), 2012 IEEE international. IEEE. pp 1–5Google Scholar
  16. Ranjan A, Mayank R, Moholkar VS (2013) Process optimization for butanol production from developed rice straw hydrolysate using Clostridium acetobutylicum MTCC 481 strain. Biomass Convers Biorefinery. 3:143–155CrossRefGoogle Scholar
  17. Sabatier JM, Ekimov AE (2006) Ultrasonic methods for human motion detection. In: Battlefield acoustic sensing for ISR applications. Meeting proceedings RTO-MP-SET-107, Paper 9. Neuilly-sur-Seine, France, RTO, pp 9-1–9-12Google Scholar
  18. Samuelson SR, Wu L, Sun J, S-w Choe, Sorg BS, Xie H (2012) A 2.8-mm imaging probe based on a high-fill-factor MEMS mirror and wire-bonding-free packaging for endoscopic optical coherence tomography. J Microelectromech Syst 21:1291–1302CrossRefGoogle Scholar
  19. Schröpfer G, Elflein W, de Labachelerie M, Porte H, Ballandras S (1998) Lateral optical accelerometer micromachined in (100) silicon with remote readout based on coherence modulation. Sens Actuators A Phys 68:344–349. doi: 10.1016/s0924-4247(98)00065-x CrossRefGoogle Scholar
  20. Teo A, Kim Y-J, Li HK-H, Yoon Y-J (2016) Highly sensitive optical motion detector. In: 2016 Symposium on design, test, integration and packaging of MEMS/MOEMS (DTIP). IEEE. pp 1–5Google Scholar
  21. Von Arx M, Paul O, Baltes H (2000) Process-dependent thin-film thermal conductivities for thermal CMOS MEMS. J Microelectromech Syst 9:136–145CrossRefGoogle Scholar
  22. Zandi K, Wong B, Jing Z, Kruzelecky RV, Jamroz W, Peter YA (2010) In-plane silicon-on-insulator optical MEMS accelerometer using waveguide fabry-perot microcavity with silicon/air bragg mirrors. In: Micro electro mechanical systems (MEMS), 2010 IEEE 23rd international conference on, 24–28 Jan 2010. pp 839–842. doi: 10.1109/memsys.2010.5442337
  23. Zhang J, Tan K, Gong H (2001) Characterization of the polymerization of SU-8 photoresist and its applications in micro-electro-mechanical systems (MEMS). Polym Test 20:693–701CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.School of Mechanical and Aerospace EngineeringNanyang Technological UniversitySingaporeSingapore
  2. 2.Queensland Micro- and Nanotechnology CentreGriffith UniversityBrisbaneAustralia

Personalised recommendations