Skip to main content
Log in

Thermo-mechanical interactions in a fractional order generalized thermoelastic solid with diffusion

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The main objective of the present paper is to analyze the effects of fractional order parameter, diffusion, velocity of moving load and time on wave propagation in a two dimensional generalized thermoelastic half-space. Medium is assumed to be unstrained and unstressed initially and has uniform temperature. The governing equations of the fractional generalization of Lord-Shulman model for an isotropic and homogeneous medium are solved by means of the Laplace–Fourier transforms. By employing a numerical inversion technique, the distributions of different fields like displacement, stresses, temperature, concentration and chemical potential are computed numerically and displayed graphically for copper material. All the physicals fields are found to be significantly affected by the above mentioned parameters. The problem of generalized thermoelasticity with diffusion has been reduced as a special case of our problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Biot M (1956) Thermoelasticity and irreversible thermo-dynamics. J Appl Phys 27:240–253

    Article  MATH  MathSciNet  Google Scholar 

  • Caputo M (1967) Linear model of dissipation whose Q is almost frequency independent-II. Geophys J R Astro Soc 13:529–539

    Article  Google Scholar 

  • Chandrasekharaiah DS (1998) Hyperbolic thermoelasticity: a review of recent literature. Appl Mech Rev 51:705–729

    Article  Google Scholar 

  • Danilovskaya V (1950) Thermal stresses in an elastic half-space due to sudden heating of its boundary. Prikl Mat Mekh 14:316–318

    MathSciNet  Google Scholar 

  • Deswal S, Choudhary S (2008) Two dimensional interactions due to moving load in generalized thermoelastic solid with diffusion. Appl Math Mech 29:207–221

    Article  MATH  MathSciNet  Google Scholar 

  • Deswal S, Kalkal K (2011) A two-dimensional generalized electro-magneto-thermo-viscoelastic problem for a half-space with diffusion. Int J Therm Sci 50:749–759

    Article  Google Scholar 

  • Deswal S, Kalkal K (2014) Plane waves in a fractional order micropolar magneto-thermoelastic half-space. Wave Motion 51:100–113

    Article  MathSciNet  Google Scholar 

  • Dhaliwal R, Sherief H (1980) Generalized thermoelasticity for anisotropic media. Quart Appl Math 33:1–8

    Article  MATH  MathSciNet  Google Scholar 

  • Ezzat MA (2010) Thermoelectric MHD non-Newtonian fluid with fractional derivative heat transfer. Phys B 405:4188–4194

    Article  Google Scholar 

  • Ezzat MA (2011) Magneto-thermoelasticity with thermoelectric properties and fractional derivative heat transfer. Phys B 406:30–35

    Article  Google Scholar 

  • Ezzat MA, El-Bary AA (2016a) Generalized fractional magneto-thermo-viscoelasticity. Microsyst Technol. doi:10.1007/s00542-016-2904-5

  • Ezzat MA, El-Bary AA (2016b) Application of fractional order theory of magneto-thermoelasticity to an infinite perfect conducting body with a cylindrical cavity. Technol, Microsyst. doi:10.1007/s00542-016-2976-2

    Google Scholar 

  • Ezzat MA, Fayik MA (2011) Fractional order theory of thermoelastic diffusion. J Therm Stresses 34:851–872

    Article  Google Scholar 

  • Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2:1–7

    Article  MATH  Google Scholar 

  • Green AE, Naghdi PM (1991) A re-examination of the basic postulates of thermo-mechanics. Proc R Soc Lond A 432:171–194

    Article  MATH  Google Scholar 

  • Green AE, Naghdi PM (1992) On undamped heat waves in an elastic solid. J Therm Stresses 15:253–264

    Article  MathSciNet  Google Scholar 

  • Green AE, Naghdi PM (1993) Thermoelasticity without energy dissipation. J Elast 31:189–209

    Article  MATH  MathSciNet  Google Scholar 

  • Hetnarski RB, Ignaczak J (1999) Generalized thermoelasticity. J Therm Stresses 22:451–476

    Article  MATH  MathSciNet  Google Scholar 

  • Jumarie G (2010) Derivation and solutions of some fractional Black- Scholes equations in coarse-grained space and time. Application to Merton’s optimal portfolio. Comp Math Appl 59:1142–1164

    Article  MATH  MathSciNet  Google Scholar 

  • Kalkal KK, Deswal S (2014) Generation of magneto-thermodiffusive plane waves in solids due to mechanical load. Int J Comput Methods Eng Sci Mech 15:322–329

    Article  MathSciNet  Google Scholar 

  • Kumar S, Sikka JS, Choudhary S (2016) Three-dimensional analysis of a thermo-viscoelastic half-space due to thermal shock in temperature-rate-dependent thermoelasticity. J Mech 32:401–411

    Article  Google Scholar 

  • Lord HW, Shulman Y (1967) A generalized dynamical theory of thermoelasticity. J Mech Phys Solids 15:299–309

    Article  MATH  Google Scholar 

  • Miller KS, Ross B (1993) An Introduction to the fractional calculus and fractional differential equation. John Wiley and Sons, New York

    MATH  Google Scholar 

  • Nowacki W (1974a) Dynamical problems of thermodiffusion in solids I. Bull Acad Pol SciSer Sci Tech 22:55–64

    MATH  MathSciNet  Google Scholar 

  • Nowacki W (1974b) Dynamical problems of thermodiffusion in solids II. Bull Acad Pol SciSer Sci Tech 22:129–135

    MATH  MathSciNet  Google Scholar 

  • Nowacki W (1974c) Dynamical problems of thermodiffusion in solids III. Bull Acad Pol SciSer Sci Tech 22:257–266

    MATH  MathSciNet  Google Scholar 

  • Nowacki W (1976) Dynamic problems of diffusion in solids. Eng Fract Mech 8:261–266

    Article  MATH  Google Scholar 

  • Olesiak ZS, Pyryev YA (1995) A coupled quasi-stationary problem of thermodiffusion for an elastic cylinder. Int J Eng Sci 33:773–780

    Article  MATH  Google Scholar 

  • Podlubny I (1999) Fractional differential equations. Academic Press, New York

    MATH  Google Scholar 

  • Podstrigach Ya S (1961) Differential equations of the problem of thermodiffusion in a solid deformable isotropic body. Dop Akad Nauk Ukr RSR No 2:169–172

    Google Scholar 

  • Podstrigach Ya S (1964) The diffusion theory of strain of an isotropic solid medium. Vopr Mekh Real Tver Tela No 2:71–99

    Google Scholar 

  • Povstenko YZ (2005) Fractional heat conduction equation and associated thermal stress. J Therm Stresses 28:83–102

    Article  MathSciNet  Google Scholar 

  • Povstenko YZ (2011) Fractional Cattaneo-type equations and generalized thermoelasticity. J Therm Stresses 34:97–114

    Article  Google Scholar 

  • Povstenko YZ (2015) Fractional Thermoelasticity. Springer, New York

    Book  MATH  Google Scholar 

  • Ross B (1977) The development of fractional calculus. Hist Math 4:75–89

    Article  MATH  MathSciNet  Google Scholar 

  • Sharma JN, Kumar V (1997) Plane strain problems of transversely isotropic thermoelastic media. J Therm Stresses 20:463–476

    Article  Google Scholar 

  • Sharma N, Kumar R, Ram P (2008) Plane strain deformation in generalized thermoelastic diffusion. Int J Thermophys 29:1503–1522

    Article  Google Scholar 

  • Sheoran SS, Kalkal KK, Deswal S (2016) Fractional order thermo-viscoelastic problem with temperature dependent modulus of elasticity. Mech Adv Mater Struct 23:407–414

    Article  Google Scholar 

  • Sherief H, Saleh H (2005) A half-space problem in the theory of generalized thermoelastic diffusion. Int J Solids Struct 42:4484–4493

    Article  MATH  Google Scholar 

  • Sherief H, Hamza F, Saleh H (2004) The theory of generalized thermoelastic diffusion. Int J Eng Sci 42:591–608

    Article  MATH  MathSciNet  Google Scholar 

  • Sherief H, El-Sayed AM, El-Latief AA (2010) Fractional order theory of thermoelasticity. Int J Solids Struct 47:269–275

    Article  MATH  Google Scholar 

  • Yadav R, Kalkal KK, Deswal S (2015) Two-temperature generalized thermoviscoelasticity with fractional order strain subjected to moving heat source: State space approach. J Math 2015:1–13 (Article ID 487513 )

    Article  MathSciNet  Google Scholar 

  • Youssef HM (2010) Theory of fractional order generalized thermoelasticity. ASME J Heat Transf 132:1–7

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunil Kumar.

Appendices

Appendix A

\( Q = \frac{1}{E}\left[ {F - 3\xi^{2} E} \right] ,\) \( N = \frac{1}{E}\left[ {G - 2\xi^{2} F + 3\xi^{4} E} \right], \) \( I = \frac{1}{E}\left[ {H - \xi^{2} G + \xi^{4} F - \xi^{6} E} \right], \) where \( E = 1 - \alpha_{3}, \)

$$\begin{aligned} F & = s\left\{ {1 + \frac{{\left( {\tau_{0} s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\}\left[ {\alpha_{3} \left( {1 + \varepsilon } \right) + \varepsilon \alpha_{1} \left( {2 + \alpha_{1} } \right) - 1} \right] \\ & \quad + \alpha_{2} s\left\{ {1 + \frac{{\left( {\tau s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\} + \alpha_{3} s^{2} ,\end{aligned} $$

\( G = - s^{2} \left[ {s\left( {\alpha_{3} + \varepsilon \alpha_{1}^{2} } \right)\left\{ {1 + \frac{{\left( {\tau_{0} s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\} + \alpha_{2} \left\{ {1 + \frac{{\left( {\tau s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\}\left[ {s + \left( {1 + \varepsilon } \right)\left\{ {1 + \frac{{\left( {\tau_{0} s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\}} \right]} \right] \),

$$ H = \alpha_{2} s^{4} \left\{ {1 + \frac{{(\tau_{0} s)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\}\left\{ {1 + \frac{{(\tau s)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\} $$

.

Appendix B

\( \lambda_{2} = \sqrt {\frac{1}{3}\left[ {2n\sin (q) - Q} \right]}, \) \( \lambda_{3} = \sqrt {\frac{1}{3}\left[ { - Q - n\left( {\sqrt 3 \,\cos (q) + \sin (q)} \right)} \right]} ,\) \( \lambda_{4} = \sqrt {\frac{1}{3}\left[ { - Q + n\left( {\sqrt 3 \,\cos (q) - \sin (q)} \right)} \right]}, \) and \( n = \sqrt {Q^{2} - 3N} ,\,\,\,q = \frac{{\sin^{ - 1} \left( r \right)}}{3},\,\,\,r = - \frac{{ - 2Q^{3} + 9QN - 27I}}{{2n^{3} }} . \)

Appendix C

\( R^{\prime}_{i} \left( {\xi ,s} \right) = d_{i} \,R_{i} \left( {\xi ,s} \right),\;R^{\prime\prime}_{i} \left( {\xi ,s} \right) = e_{i} R_{i} \left( {\xi ,s} \right) \),where

$$ d_{i} = \frac{{X_{1} \lambda_{i}^{2} - X_{2} }}{{X_{3} \lambda_{i}^{2} - X_{4} }},\,\,\,e_{i} = \frac{{X_{5} \lambda_{i}^{4} - X_{6} \lambda_{i}^{2} + X_{7} }}{{X_{8} \lambda_{i}^{2} - X_{9} }},\,\,\,\left( {i = 2,3,4} \right) $$

and

$$ X_{1} = \varepsilon \left( {1 + \alpha_{1} } \right),\,\,X_{2} = \varepsilon \left[ {\alpha_{1} \left( {\xi^{2} + s^{2} } \right) + \xi^{2} } \right] $$

\( X_{3} = \frac{1}{{s\left\{ {1 + \frac{{\left( {\tau_{0} s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\}}},\,\,\,X_{4} = \xi^{2} X_{3} - \varepsilon \alpha_{1} + 1 \),

$$ X_{5} = \frac{{X_{1} }}{\varepsilon },\,\,\,X_{6} = \alpha_{1} \left( {s^{2} + 2\xi^{2} } \right) + 2\xi^{2} ,\,\,X_{7} = \alpha_{1} \xi^{2} \left( {\xi^{2} + s^{2} } \right) + \xi^{4}, $$
$$ X_{8} = \alpha_{1} + \alpha_{3} ,\,\,X_{9} = X_{8} \xi^{2} + \alpha_{2} s\left\{ {1 + \frac{{\left( {\tau s} \right)^{\alpha } }}{{\varGamma \left( {\alpha + 1} \right)}}} \right\}. $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhary, S., Kumar, S. & Sikka, J.S. Thermo-mechanical interactions in a fractional order generalized thermoelastic solid with diffusion. Microsyst Technol 23, 5435–5446 (2017). https://doi.org/10.1007/s00542-017-3340-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-017-3340-x

Keywords

Navigation