Microsystem Technologies

, Volume 24, Issue 1, pp 669–681 | Cite as

Fabrication and hemocompatibility of carboxy-chitosan stabilized magnetite nanoparticles

  • Md. Abdur Rahman
  • Bungo Ochiai
Technical Paper


This paper describes fabrication of a new hemocompatible, magnetic nanoparticles based on magnetite and naturally occurring chitosan, potentially applicable as biomaterials to nanobiomedicine. We fabricated carboxy-functionalized magnetite–chitosan (Fe3O4–CS–BTCDA) nanocomposite particles by a simple two-stage protocol. Magnetite–chitosan (Fe3O4–CS) nanocomposite particles were first prepared via in situ chemical coprecipitation reactions using Fe2+ and Fe3+ salts in an alkaline aqueous solution of CS. Fe3O4–CS nanocomposite particles were then reacted with butanetetracarboxylic dianhydride (BTCDA) to obtain the Fe3O4–CS–BTCDA nanocomposite particles dispersible under physiological conditions. The obtained nanoparticles are superparamagnetic. The hemolytic activity of the Fe3O4–CS–BTCDA nanocomposite particles is very low and essential for practical bio-related applications.



The authors thank Mr. Nobuaki Kutsuzawa and Dr. Osamu Ishii of Yamagata University for instruction on the magnetic measurements, and Dr. Shigekazu Yano of Yamagata University for his kind assistance on the hemocompatibility analysis. Md. Abdur Rahman also acknowledges the financial support from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.


  1. Abreu F, Campana-Filho SP (2005) Preparation and characterization of carboxymethylchitosan. Polímeros: Ciência e Tecnologia 15:79–83Google Scholar
  2. Ahmad H, Rahman MA, Miah MAJ, Tauer K (2008) Magnetic and temperature-sensitive composite polymer particles and adsorption behavior of emulsifiers and trypsin. Macromol Res 16:637–643CrossRefGoogle Scholar
  3. Alupei L, Peptu AC, Lungan AM, Desbrieres J, Chiscan O, Radji S, Popa M (2016) New hybrid magnetic nanoparticles based on chitosan-maltose derivative for antitumor drug delivery. Int J Biol Macromol 92:561–572CrossRefGoogle Scholar
  4. Amit PK, Ferguson MR, Kannan MK (2011) Monodispersed magnetite nanoparticles optimized for magnetic fluid hyperthermia: implications in biological systems. J Appl Phys 109:07B310-1–07B310-3CrossRefGoogle Scholar
  5. Anirudhan ST, Gopal SS, Sandeep S (2014) Synthesis and characterization of montomorillonite/N-(carboxyacyl) chitosan coated magnetic particle nanocomposites for controlled delivery of paracetamol. Appl Clay Sci 88–89:151–158CrossRefGoogle Scholar
  6. Arias JL, Reddy LH, Couvreur P (2012) Fe3O4/chitosan nanocomposite for magnetic drug targeting to cancer. J Appl Phys 109:084303–084311Google Scholar
  7. Ayyappan S, Panneerselvam G, Antony MP, Rama Rao NV, Thirumurugan N, Bharathi A, Philip J (2011) Effect of initial particle size on phase transformation temperature of surfactant capped Fe3O4 nanoparticles. J Phys Chem C 112:18376–18383CrossRefGoogle Scholar
  8. Bae KH, Park M, Do MJ, Lee N, Ryu JH, Kim GW, Kim C, Park TG, Hyeon T (2012) Chitosan, oligosaccharide-stabilized ferrimagnetic iron oxide nanocubes for magnetically modulated cancer hyperthermia. ACS Nano 6:5266–5273CrossRefGoogle Scholar
  9. Bauer LM, Situ SF, Griswold MA, Samia ACS (2016) High-performance iron oxide nanoparticles for magnetic particle imaging-guided hyperthermia (hMPI). Nanoscale 8:12162–12169CrossRefGoogle Scholar
  10. Cai K, Li J, Luo Z, Hu Y, Hou Y, Ding X (2011) β-Cyclodextrin conjugated magnetic nanoparticles for diazepam removal from blood. Chem Commun 47:7719–7721CrossRefGoogle Scholar
  11. Chang YC, Chen DH (2005) Preparation and adsorption properties of monodisperse chitosan-bound Fe3O4magnetic nanoparticles for removal of Cu(II) ions. J Coll Interf Sci 283:446–451CrossRefGoogle Scholar
  12. Chang B, Zhang X, Guo J, Sun Y, Tang H, Ren Q, Yang W (2012) General one-pot strategy to prepare multifunctional nanocomposites with hydrophilic colloidal nanoparticles core/mesoporous silica shell structure. J Colloid Interface Sci 377:64–75CrossRefGoogle Scholar
  13. Chen H, Kaminski MD, Liu X, Mertz CJ, Xie Y, Torno MD, Roengart AJ (2007) A novel human detoxification system based on nanoscale bioengineering and magnetic separation techniques. Med Hypoth 68:1071–1079CrossRefGoogle Scholar
  14. Cornell RM, Schwertmann U (1996) The iron oxides: structure, properties, reactions, occurrence and uses. Wiley-VCH, WeinheimGoogle Scholar
  15. da Costa GM, De Grave E, de Bakker PMA, Vandenberghe RE (1994) Synthesis and characterization of some iron oxides by sol-gel method. J Solid State Chem 113:405–412CrossRefGoogle Scholar
  16. Dewi MR, Skinner WM, Nann T (2014) Synthesis and phase transfer of monodisperse iron oxide (Fe3O4) nanocubes. Aust J Chem 67:663–669CrossRefGoogle Scholar
  17. Dolatkhah A, Wilson LD (2016) Magnetite/polymer brush nanocomposites with switchable uptake behavior toward methylene blue. ACS Appl Mater Interf 8:5595–5607CrossRefGoogle Scholar
  18. Du Y, Pei M, He Y, Yu F, Guo W, Wanng L (2014) Preparation, characterization and application of magnetic Fe3O4–CS for the adsorption of orange I from aqueous solutions. PLoS ONE 9:e116073CrossRefGoogle Scholar
  19. Faiyas APA, Vinod ME, Joseph J, GanesanR Pandey K R (2010) Dependence of pH and surfactant effect in the synthesis of magnetite (Fe3O4) nanoparticles and its properties. J Magn Magn Mater 322:400–404CrossRefGoogle Scholar
  20. Gupta J, Mohapatra J, Bhargava P, Bahadur D (2016) A pH-responsive folate conjugated magnetic nanoparticle for targeted chemo-thermal therapy and MRI diagnosis. Dalton Trans 45:2454–2461CrossRefGoogle Scholar
  21. Hasany FS, Ahmed I, Rajan J, Rehman A (2012) Systematic review of the preparation techniques of iron oxide magnetic nanoparticles. Nanosci Nanotechnol 2:148–158CrossRefGoogle Scholar
  22. Hong YR, Feng B, Chen LL, Liu HG, Li ZH, Zheng Y, Wei GD (2008) Synthesis, characterization and MRI application of dextran-coated Fe3O4 magnetic nanoparticles. Biochem Eng J 42:290–300CrossRefGoogle Scholar
  23. Hong S, Chang Y, Rhee I (2010) Chitosan-coated ferrite (Fe3O4) nanoparticles as a T2 contrast agent for magnetic resonance imaging. J Korean Phys Soc 56:868–873CrossRefGoogle Scholar
  24. Hritcu D, Popa M, Popa N, Badescu V, Balan V (2009) Preparation and characterization of magnetic chitosan nanospheres. Turk J Chem 33:785–796Google Scholar
  25. Jin J, Yang F, Zhang F, Hu W, Sun SB, Ma J (2012) 2,2′-(phenylazanediyl) diacetic acid modified Fe3O4@PEI for selective removal of cadmium ions from blood. Nanoscale 4:733–736CrossRefGoogle Scholar
  26. Kadam AA, Lee SD (2015) Glutaraldehyde cross-linked magnetic chitosan nanocomposites: reduction precipitation synthesis, characterization, and application for removal of hazardous textile dyes. Bioresour Technol 193:563–567CrossRefGoogle Scholar
  27. Kalkan NA, Aksoy S, Aksoy EA, Hasirci N (2012) Preparation of chitosan-coated magnetite nanoparticles and application for immobilization of laccase. J Appl Polym Sci 123:707–716CrossRefGoogle Scholar
  28. Kariminia S, Shamsipuri A, Shamsipuri M (2016) Analytical characteristics and application of novel chitosan coated magnetic nanoparticles as an efficient drug delivery system for ciprofloxacin. Enhanced drug release kinetics by low-frequency ultrasounds. J Pharm Biomed Anal 129:450–457CrossRefGoogle Scholar
  29. Kim DH, Kim KN, Kim KM, Lee YK (2009) Targeting to carcinoma cells with chitosan- and starch-coated magnetic nanoparticles for magnetic hyperthermia. J Biomed Mater Res A 88:1–11CrossRefGoogle Scholar
  30. Kono H, Oeda I, Nakamura T (2013) The preparation swelling characteristics, and albumin adsorption and release behaviors of a novel chitosan-based polyampholite hydrogel. React Funct Polym 73:97–107CrossRefGoogle Scholar
  31. Köseoglu Y, Kavas H (2008) Size and surface effects on magnetic properties of Fe3O4 nanoparticles. J Nanosci Nanotechnol 8:584–590CrossRefGoogle Scholar
  32. Kumar SR, Priyatharshni S, Babu VN, Mangalaraj D, Viswanathan C, Kannan S, Ponpandian N (2014) Quercetin conjugated superparamagnetic magnetite nanoparticles for in vitro analysis of breast cancer cell lines for chemotherapy applications. J Colloid Interface Sci 436:234–242CrossRefGoogle Scholar
  33. Larumbe S, Gomez-Polo C, Perez-Landazabal J, Pastor JMJ (2012) Effect of SiO2 coating on the magnetic properties of Fe3O4 nanoparticles. Phys Condens Matter 24:1–6CrossRefGoogle Scholar
  34. Lemine OM, Omri K, Zhang B, Mir EL, Sajieddine M, Alyamani A, Bououdina M (2012) Sol-gel synthesis of 8 nm magnetite (Fe3O4) nanoparticles and their magnetic properties. Superlat Microst 52:793–799CrossRefGoogle Scholar
  35. Li J, Hou Y, Chen X, Ding X, Liu Y, Shen X, Cai K (2014) Recyclable heparin and chitosan conjugated magnetic nanocomposites for selective removal of low-density lipoprotein from plasma. J Mater Sci Mater Med 25:1055–1064CrossRefGoogle Scholar
  36. Liu X, Hu Q, Fang Z, Zhang X, Zhang B (2009) Magnetic chitosan nanocomposites: a useful recyclable tool for heavy metal ion removal. Langmuir 25:3–8CrossRefGoogle Scholar
  37. Liu X, Chen X, Li Y, Wang X, Peng X, Zhu W (2012) Preparation of superparamagnetic Fe3O4@alginate/chitosan nanospheres for candida rugosa lipase immobilization and utilization of layer-by-layer assembly to enhance the stability of immobilized lipase. ACS Appl Mater Inter 4:5169–5178CrossRefGoogle Scholar
  38. Liu Y, Yuan M, Qiao L, Guo R (2014) An efficient colorimetric biosensor for glucose based on peroxidase-like protein-Fe3O4 and glucose oxidase nanocomposites. Biosens Bioelectron 52:391–396CrossRefGoogle Scholar
  39. Long J, Yu X, Xu E, Wu Z, Xu X, Jin Z, Jiao A (2015) In situ synthesis of new magnetite chitosan/carrageenan nanocomposites by electrostatic interactions for protein delivery applications. Carbohydr Polym 131:98–107CrossRefGoogle Scholar
  40. López GR, Pineda GM, Hurtado G, de León DR, Fernández S, Saade H, Bueno D (2013) Chitosan-coated magnetic nanoparticles prepared in one step by reverse microemulsion precipitation. Int J Mol Sci 141:9636–19650Google Scholar
  41. Luo B, Song XJ, Zhang F, Xia A, Yang WL, Hu JH, Wang CC (2010) Multi-functional thermosensitive composite microspheres with high magnetic susceptibility based on magnetite colloidal nanoparticle clusters. Langmuir 26:1674–1679CrossRefGoogle Scholar
  42. Madhuri-Mandal M, Kundu S, Ghosh KS, Panigrahi S, Sau KT, Yusuf SM, Pal T (2005) Magnetite nanoparticles with tunable gold or silver shell. J Colloid Interface Sci 286:187–194CrossRefGoogle Scholar
  43. Massart M (1981) Preparation of aqueous magnetic liquids in alkaline and acidic media. IEEE Trans Magn 17:1247–1248CrossRefGoogle Scholar
  44. Onem H, Cicek S, Nadaroglu H (2016) Immobilization of a thermostable phytase from Pinar melkior (Lactarius piperatus) onto magnetite chitosan nanoparticles. CyTA J Food 14:74–83CrossRefGoogle Scholar
  45. Paluszkiewicz C, Stodolak E, Hasik M, Blazewicz M (2011) FT-IR study of montmorillonite-chitosan nanocomposite materials. Spectrochim Acta Part A 79:784–788CrossRefGoogle Scholar
  46. Pan C, Hu B, Li W, Sun Y, Ye H, Zeng X (2009) Novel and efficient method for immobilization and stabilization of β-d-galactosidase by covalent attachment onto magnetic Fe3O4-chitosan nanoparticles. J Mol Catal B Enzyme 61:208–215CrossRefGoogle Scholar
  47. Pilapong C, Sitthichai S, Thongtem S, Thongtem T (2014) Smart magnetic nanoparticle-aptamer probe for targeted imaging and treatment of hepatocellular carcinoma. Int J Pharm 473:469–474CrossRefGoogle Scholar
  48. Pylypchuk IV, Kołodyńska D, Kozioł M, Gorbyk PP (2016) Gd-DTPA adsorption on chitosan/magnetite nanocomposites. Nanoscale Res Lett 11:68–178CrossRefGoogle Scholar
  49. Sadighian S, Hosseini-Monfared S, Rostamizadeh K, Hamidi M (2015) pH-Triggered magnetic-chitosan nanogels (MCNs) for doxorubicin delivery: physically vs. chemically cross linking approach. Adv Pharm Bull 5:115–120Google Scholar
  50. Safari J, Javadian L (2014) Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv 4:48973–48979CrossRefGoogle Scholar
  51. Sakti WCS, Narita Y, Sasaki T, Nuryono Tanaka S (2015) A novel pyridinium functionalized magnetic chitosan with pH-independent and rapid adsorption kinetics for magnetic separation of Cr(VI). J Environ Chem Eng 3:1953–1961CrossRefGoogle Scholar
  52. Salazar-Alvarez G (2004) Synthesis, characterization and application of iron oxide nanoparticles. Doctoral Thesis, Stockholm, SwedenGoogle Scholar
  53. Samadikhah HR, Majidi A, Nikkhah M, Hosseinkhani S (2011) Preparation, characterization, and efficient transfection of cationic liposomes and nanomagnetic cationic liposomes. Int J Nanomed 6:2275–2283Google Scholar
  54. Shen S, Zeng H (2002) Size-controlled synthesis of magnetite nanoparticles. J Am Chem Soc 124:8204–8205CrossRefGoogle Scholar
  55. Shrifian-Esfahni A, Salehi TM, Nasr-Esfahni M, Ekramian E (2015) Chitosan-modified superparamagnetic iron oxide nanoparticles: design, fabrication, characterization and antibacterial activity. CHEMIK 69:19–32Google Scholar
  56. Singhal JP, Ray AR (2002) Synthesis of blood compatible polyamide block copolymers. Biomaterials 23:1139–1145CrossRefGoogle Scholar
  57. Sreeja V, Joy PA (2011) Effect of inter-particle interactions on the magnetic properties of magnetite nanoparticles after coating with dextran. Int J Nanotech 8:907–915CrossRefGoogle Scholar
  58. Strobel R, Pratsinis ES (2009) Direct synthesis of maghemite, magnetite and wustite nanoparticles by flame spray pyrolysis. Adv Powder Tech 20:190–194CrossRefGoogle Scholar
  59. Sun HM, Cao LY, Lu LH (2011) Magnetite/reduced graphene oxide nanocomposites: one step solvothermal synthesis and use as a novel platform for removal of dye pollutants. Nano Res 4:550–562CrossRefGoogle Scholar
  60. Tartaj P, Morales MD, Veintemillas-Verdaguer S, Gonzalez-Carreno T, Serna CJ (2003) The preparation of magnetic nanoparticles for applications in biomedicine. J Phys D Appl Phys 36:R182–R197CrossRefGoogle Scholar
  61. Thakur M, De K, Giri S, Si S, Kotal A, Mandal KT (2006) Interparticle interaction and size effect in polymer coated magnetite nanoparticles. J Phys: Condens Matter 98:9093–9104Google Scholar
  62. Tran VH, Tran DL, Nguyen NT (2010) Preparation of chitosan/magnetite composite beads and their application for removal of Pb(II) and Ni(II) from aqueous solution. Mater Sci Eng, C 30:304–310CrossRefGoogle Scholar
  63. Unsoy G, Yalcin S, Khodadust R, Gunduz G, Gunduz U (2012) Synthesis optimization and characterization of chitosan-coated iron oxide nanoparticles produced for biomedical applications. J Nanopart Res 14:964–976CrossRefGoogle Scholar
  64. Vuddanda PR, Rajamanickam VM, Yaspal M, Sing S (2014) Investigations on agglomeration and hemocompatibility of vitamin E TPGS surface modified berberin chloride nanoparticles. Biomed Res Int 2014:1–11CrossRefGoogle Scholar
  65. Wang Y, Li B, Xu F, Jia D, Feng Y, Zhou Y (2012) In vitro cell uptake of biocompatible magnetite/chitosan nanoparticles with high magnetization: a single-step synthesis approach for in situ-modified magnetite by amino groups of chitosan. J Biomater Sci Polym Ed 23:843–860CrossRefGoogle Scholar
  66. Weinhold XM, Sauvageau MCJ, Keddig N, Matzke M, Tartsch B, Grunwald I, Kubel C, Jastorffg B, Thoming J (2009) Strategy to improve the characterization of chitosan for sustainable biomedical applications: SAR guided multi-dimensional analysis. Green Chem 11:498–509CrossRefGoogle Scholar
  67. Zamora-Mora V, Fernández-Gutiérrez M, Román SJ, Goya G, Hernández R, Mijangos C (2014) Magnetic core-shell chitosan nanoparticles: rheological characterization and hyperthermia application. Carbohydr Polym 102:691–698CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Department of Chemistry and Chemical Engineering, Graduate School of Science and EngineeringYamagata UniversityYonezawaJapan

Personalised recommendations