Microsystem Technologies

, Volume 23, Issue 10, pp 4797–4804 | Cite as

Analysis and testing of a contraction-and-expansion micromixer for micromilled microfluidics

Technical Paper


In this paper, numerical analysis and experimental investigation of a micromixer, which was specifically designed for microfluidic devices fabricated by micromilling, is presented. The mixer is composed of series of contractions and expansions in zigzag arrangement along a mixing channel. Mixers, fabricated by micromilling on polymethylmethacrylate (PMMA), were tested with %0.1 Ponceau 4R red food dye solution and distilled water. According to experiment results, over 70% mixing efficiency could be obtained for the flows with Reynolds number (Re) greater than 40. It was also numerically shown that by increasing the number of successive contractions and expansions, it could be possible to achieve over 80% mixing efficiency when Re = 55 for the species with diffusion coefficient of 5 × 10−9 m2/s. Although the micromixer was specifically designed for micromilling, it is expected that the mixer can be useful in any microfluidic device fabricated by any other technique.


  1. Afzal A, Kim KY (2015) Convergent–divergent micromixer coupled with pulsatile flow. Sens Actuators B Chem 211:198–205. doi:10.1016/j.snb.2015.01.062 CrossRefGoogle Scholar
  2. Bau HH, Zhong J, Yi M (2001) A minute magneto hydro dynamic (MHD) mixer. Sens Actuators Chem 79:207–215. doi:10.1016/S0925-4005(01)00851-6 CrossRefGoogle Scholar
  3. Bhagat AAS, Papautsky I (2008) Enhancing particle dispersion in a passive planar micromixer using rectangular obstacles. J Micromech Microeng 18:85005. doi:10.1088/0960-1317/18/8/085005 CrossRefGoogle Scholar
  4. Bhagat AAS, Peterson ETK, Papautsky I (2007) A passive planar micromixer with obstructions for mixing at low Reynolds numbers. J Micromech Microeng 17:1017–1024. doi:10.1088/0960-1317/17/5/023 CrossRefGoogle Scholar
  5. Bottausci F, Cardonne C, Meinhart C, Mezić I (2007) An ultrashort mixing length micromixer: the shear superposition micromixer. Lab Chip 7:396–398. doi:10.1039/b616104a CrossRefGoogle Scholar
  6. Cha J, Kim J, Ryu SK, Park J, Jeong Y, Park S, Chun K (2006) A highly efficient 3D micromixer using soft PDMS bonding. J Micromech Microeng 16:1778–1782. doi:10.1088/0960-1317/16/9/004 CrossRefGoogle Scholar
  7. Cheaib F, Kekejian G, Antoun S, Cheikh M, Lakkis I (2016) Microfluidic mixing using pulsating flows. Microfluid Nanofluid 20:70. doi:10.1007/s10404-016-1731-4 CrossRefGoogle Scholar
  8. Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984. doi:10.1021/ac980656z CrossRefGoogle Scholar
  9. Gibbings JC (2011) Dimensional analysis. Springer-Verlag, LondonCrossRefMATHGoogle Scholar
  10. Glasgow I, Aubry N (2003) Enhancement of microfluidic mixing using time pulsing. Lab Chip 3:114–120. doi:10.1039/B302569A CrossRefGoogle Scholar
  11. Goenaga I, Goenaga I, Lizuain I, Ozaita M (2005) Femtosecond laser ablation for microfluidics. Opt Eng 44:51105. doi:10.1117/1.1902783 CrossRefGoogle Scholar
  12. Guckenberger DJ, de Groot TE, Wan AMDD, Beebe DJ, Young EWK (2015) Micromilling: a method for ultra-rapid prototyping of plastic microfluidic devices. Lab Chip 15:2364–2378. doi:10.1039/C5LC00234F CrossRefGoogle Scholar
  13. Harnett CK, Templeton J, Dunphy-Guzman KA, Senousy YM, Kanouff MP (2008) Model based design of a microfluidic mixer driven by induced charge electroosmosis. Lab Chip 8:565. doi:10.1039/b717416k CrossRefGoogle Scholar
  14. Huang P-H, Xie Y, Ahmed D, Rufo J, Nama N, Chen Y, Huang TJ (2013) An acoustofluidic micromixer based on oscillating sidewall sharp-edges. Lab Chip 13:3847–3852. doi:10.1039/c3lc50568e CrossRefGoogle Scholar
  15. Klank H, Kutter JP, Geschke O (2002) CO2-laser micromachining and back-end processing for rapid production of PMMA-based microfluidic systems. Lab Chip 2:242. doi:10.1039/b206409j CrossRefGoogle Scholar
  16. Kricka LJ, Fortina P, Panaro NJ, Wilding P, Alonso-Amigo G, Becker H (2002) Fabrication of plastic microchips by hot embossing. Lab Chip 2:1–4. doi:10.1039/b109775j CrossRefGoogle Scholar
  17. Lee C-Y, Lee G-B, Fu L-M, Lee K-H, Yang R-J (2004) Electrokinetically driven active micro-mixers utilizing zeta potential variation induced by field effect. J Micromech Microeng 14:1390–1398. doi:10.1088/0960-1317/14/10/014 CrossRefGoogle Scholar
  18. Lee SW, Kim DS, Lee SS, Kwon TH (2006) A split and recombination micromixer fabricated in a PDMS three-dimensional structure. J Micromech Microeng 16:1067–1072. doi:10.1088/0960-1317/16/5/027 CrossRefGoogle Scholar
  19. Lee MG, Choi S, Park J-K (2009) Rapid laminating mixer using a contraction-expansion array microchannel. Appl Phys Lett 95:51902. doi:10.1063/1.3194137 CrossRefGoogle Scholar
  20. Lee MG, Choi S, Park J-K (2010) Rapid multivortex mixing in an alternately formed contraction-expansion array microchannel. Biomed Microdevices 12:1019–1026. doi:10.1007/s10544-010-9456-8 CrossRefGoogle Scholar
  21. Luong T-D, Phan V-N, Nguyen N-T (2011) High-throughput micromixers based on acoustic streaming induced by surface acoustic wave. Microfluid Nanofluid 10:619–625. doi:10.1007/s10404-010-0694-0 CrossRefGoogle Scholar
  22. Munson MS, Yager P (2004) Simple quantitative optical method for monitoring the extent of mixing applied to a novel microfluidic mixer. Anal Chim Acta 507:63–71. doi:10.1016/j.aca.2003.11.064 CrossRefGoogle Scholar
  23. Ng WY, Goh S, Lam YC, Yang C, Rodríguez I (2009) DC-biased AC-electroosmotic and AC-electrothermal flow mixing in microchannels. Lab Chip 9:802–809. doi:10.1039/B813639D CrossRefGoogle Scholar
  24. Nguyen N-T, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16. doi:10.1088/0960-1317/15/2/R01 CrossRefGoogle Scholar
  25. Stroock AD, Dertinger SKW, Ajdari A, Mezic I, Stone HA, Whitesides GM (2002a) Chaotic mixer for microchannels. Science 295:647–651. doi:10.1126/science.1066238 CrossRefGoogle Scholar
  26. Stroock AD, Dertinger SK, Whitesides GM, Ajdari A (2002b) Patterning flows using grooved surfaces. Anal Chem 74:5306–5312. doi:10.1021/ac0257389 CrossRefGoogle Scholar
  27. Sudarsan A, Ugaz V (2006) Multivortex micromixing. Proc Natl Acad Sci USA 103:7228–7233. doi:10.1073/pnas.0507976103 CrossRefGoogle Scholar
  28. Tabeling P, Chabert M, Dodge A, Jullien C, Okkels F (2004) Chaotic mixing in cross-channel micromixers. Philos Trans Royal Soc Lond A Math Phys Eng Sci 362:987–1000. doi:10.1098/rsta.2003.1358 CrossRefGoogle Scholar
  29. Tofteberg T, Skolimowski M, Andreassen E, Geschke O (2010) A novel passive micromixer: lamination in a planar channel system. Microfluid Nanofluid 8:209–215. doi:10.1007/s10404-009-0456-z CrossRefGoogle Scholar
  30. Tseng W-K, Lin J-L, Sung W-C, Chen S-H, Lee G-B (2006) Active micro-mixers using surface acoustic waves on Y-cut 128° LiNbO3. J Micromech Microeng 16:539–548. doi:10.1088/0960-1317/16/3/009 CrossRefGoogle Scholar
  31. Wang Y, Zhe J, Chung BTF, Dutta P (2008) A rapid magnetic particle driven micromixer. Microfluid Nanofluid 4:375–389. doi:10.1007/s10404-007-0188-x CrossRefGoogle Scholar
  32. Wong SH, Bryant P, Ward M, Wharton C (2003) Investigation of mixing in a cross-shaped micromixer with static mixing elements for reaction kinetics studies. Sens Actuators Chem 95:414–424. doi:10.1016/S0925-4005(03)00447-7 CrossRefGoogle Scholar
  33. Zhu G-P, Nguyen N-T (2012) Rapid magnetofluidic mixing in a uniform magnetic field. Lab Chip 12:4772–4780. doi:10.1039/c2lc40818j CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Mechanical Engineering DepartmentÇankaya UniversityAnkaraTurkey

Personalised recommendations