Skip to main content

Advertisement

Log in

CS reconstruction in MIMO channel using square complex orthogonal STB codes

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

Compressed sensing (CS) is the process of signal reconstruction at a rate far below the Nyquist sampling rate. Sometimes, CS measurements need transmission over radio mobile channel for bandwidth preserving and energy efficient system design and/or application specific system design such as wireless body area network (WBAN), remote surveillance system etc. To this aim, this work proposes an integrated system design for quality improvement in CS reconstructed images over radio mobile channel modelled as Rayleigh flat fading. The design of a non-zero-entry Single Symbol Decodable Square Complex Orthogonal, Space Time Block Codes (STBC) for 16 antennas is proposed first. This multi-channel facility is then exploited for transmission of CS measurements, which at the receiver side, undergo Robbins–Monro (RM) method, a non-parametric stochastic approach for predicting the unobserved spaces from the observed ones through recursive filtering. Similar study is also done using a relaxed convex optimization of the basis pursuit algorithm, a parametric based approach. Extensive simulation results highlight the efficacy of the proposed CS and STBC (CS–STBC) scheme for the quality improvement on the reconstructed images as the variation in the number of antennas, change in the number of measurements and variation on signal-to-noise ratio. It also highlights significant performance gain in CS reconstruction over radio mobile channel using STBC framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akhtar J (2014) Space-time block codes and compressed sensing in spatially diverse radars. In: International radar conference, France, October 2014

  • Alamouti SM (2002) A simple transmit diversity technique for wireless communications. IEEE J Select Areas Commun 48(2):384–395

    Google Scholar 

  • Cai J-F, Osher S, Shen Z (2009) Linearized bregman iterations for compressed sensing. J Math Comput 78(267):1515–1536

    Article  MathSciNet  MATH  Google Scholar 

  • Candes EJ, Romberg JK, Tao T (2006) Stable signal recovery from incomplete and inaccurate measurements. J Commun Pure Appl Math 59(8):1207–1223

    Article  MathSciNet  MATH  Google Scholar 

  • Chebolu ML, Jayaweera SK (2005) Integrated design of STBC-based virtual-MIMO and distributed compression in energy-limited wireless sensor networks. In: Second European workshop on wireless sensor networks (EWSN ’05), proceedings, Istanbul, Turkey, January–Feburary 2005

  • Chen CY, Vaidyanathan PP (2008) Compressed sensing in MIMO radar. In: 42nd Asilomar conference on signals, systems and computers, proceedings, California, USA, Oct. 2008

  • Craven D, McGinley B, Kilmartin L, Glavin M, Jones E (2015) Compressed sensing for bioelectric signals: a review. IEEE J Biomed Health Inf 19(2):529–540

    Article  Google Scholar 

  • Dabov K, Foi A, Katkovnik V, Egiazarian K (2007) Image denoising by sparse 3-d transform-domain collaborative filtering. IEEE Trans Image Process 16(8):2080–2095

    Article  MathSciNet  Google Scholar 

  • Das S, Rajan BS (2009) Square complex orthogonal designs with low PAPR and signaling complexity. IEEE Trans Wirel Commun 8(1):204–213

    Article  Google Scholar 

  • Daubechies I, Saab R (2015) A deterministic analysis of decimation for sigma-delta quantization of bandlimited functions. IEEE Signal Process Lett 22(11):2093–2096

    Article  Google Scholar 

  • Donoho DL (2006) Compressed sensing. IEEE Trans Inf Theory 52(4):1289–1306

    Article  MathSciNet  MATH  Google Scholar 

  • Egiazarian K, Foi A, Katkovnik V (2007) Compressed sensing image reconstruction via recursive spatially adaptive filtering, In: 14th IEEE international conference on image processing (ICIP ’07), proceedings, Texas, USA, September 2007

  • Feng L, Axel L, Chandarana H, Block KT, Sodickson DK, Otazo R (2016) XD-GRASP: golden-angle radial MRI with reconstruction of extra motion-state dimensions using compressed sensing. Magn Reson Med 75:775–788

    Article  Google Scholar 

  • Foucart S (2014) Stability and robustness of 1-minimizations with Weibull matrices and redundant dictionaries. Linear Algebra Appl 441:4–21

    Article  MathSciNet  MATH  Google Scholar 

  • Fowler JE, Mun S, Tramel EW (2011) Multiscale block compressed sensing with smoothed projected Landweber reconstruction. In: 19th European Signal Processing Conference (EUSIPCO ’11), proceedings, Barcelona, Spain, Aug. 2011

  • Gao Z, Dai L, Wang Z (2014) Structured compressive sensing based superimposed pilot design in downlink large-scale MIMO systems. Electron Lett 50(12):896–898

    Article  Google Scholar 

  • Giryes R, Nam S, Elad M, Gribonval R, Davies ME (2014) Greedy-like algorithms for the cosparse analysis model. Linear Algebra Appl 441:22–60

    Article  MathSciNet  MATH  Google Scholar 

  • Khan MZA, Rajan BS (2006) Single-symbol maximum likelihood decodable linear STBCs. IEEE Trans Inf Theory 52(5):2062–2091

    Article  MathSciNet  MATH  Google Scholar 

  • Kim MLSSJ, Koh K, Gorinevsky D (2007) An interior-point method for large-scale 1 -regularized least squares. IEEE J Select Topics Signal Process 1:606–617

    Article  Google Scholar 

  • Knudson K, Saab R, Ward R (2016) One-bit compressive sensing with norm estimation. IEEE Trans Inf Theory 62(5):2748–2758

    Article  MathSciNet  MATH  Google Scholar 

  • Li Y, Pados DA (2016) Compressed-sensed-domain L1-PCA video surveillance. IEEE Trans Multimed 18(3):351–363

    Article  Google Scholar 

  • Lin Z (2012) Image recovery based on compressive sensing and Curvelet transform via ROMP. In: 9th international conference on fuzzy systems and knowledge discovery, Sichuan, 2012: 1812–1815

  • Lu W, Liu Y, Wang D (2011) Compressed sensing in spatial MIMO channels. In: 2nd international conference on wireless communication, vehicular technology, information theory and aerospace and electronic systems technology (Wireless VITAE ’11), proceedings, Chennai, India, Mar. 2011

  • Majumdar A, Ward RK (2015) Energy efficient EEG sensing and transmission for wireless body area networks: a blind compressed sensing approach. Biomed Signal Process Control 20:1–9

    Article  Google Scholar 

  • Mansour H, Saab R (2015) Recovery analysis for weighted - minimization using the null space property. Applied and Computational Harmonic Analysis. Available online 19 October 2015, ISSN 1063–5203, http://dx.doi.org/10.1016/j.acha.2015.10.005

  • Montefusco LB, Lazzaro D, Papi S (2011) Fast sparse image reconstruction using adaptive nonlinear filtering. IEEE Trans Image Process 20(2):534–544

    Article  MathSciNet  Google Scholar 

  • Needell D, Tropp JA (2009) Cosamp: Iterative signal recovery from incomplete and inaccurate samples. Appl Comput Harmon Anal 26(3):301–321

    Article  MathSciNet  MATH  Google Scholar 

  • Plan Y, Vershynin R (2016) The generalized Lasso with non-linear observations. IEEE Trans Inf Theory 62(3):1528–1537

    Article  MathSciNet  MATH  Google Scholar 

  • Polana LF, Carrillo RE, Blanco-Velasco M, Barner KE (2015) Exploiting prior knowledge in compressed sensing wireless ECG systems. IEEE J Biomed Health Inf 19(2):508–519

    Article  Google Scholar 

  • Pramanik A, Rajan BS (2010) No-zero-entry, square, single-symbol ML Decodable STBCs. In: National conference on communications (NCC ’10), proceedings, Chennai, India, January 2010

  • Pramanik A, Maity SP (2015) CS reconstruction images using LDPC code over radio mobile channel. In: 5th international conference on wireless communications, vehicular technology, information theory and aerospace and electronic systems (WVITAE ’15) proceedings, Hyderabad, India, December 2015

  • Saab R, Wang R, Ylmaz (2016) Quantization of compressive samples with stable and robust recover. Appl Comput Harmon Anal

  • Seberry J, Tran LC, Wang Y, Wysocki BJ, Wysocki TA, Xia T, Zhao Y (2004) New complex orthogonal space-time block codes of order eight. Signal Processing for Telecommunications and Multimedia, Multimedia systems and applications, 27: 173–182, Springer, New York

  • Street DJ (1982) Cyclotomy and designs. Ph.D. Thesis, University of Sydney, Australia

  • Tarokh V, Jafarkhani H, Calderbank AR (1999) Space-time block codes from orthogonal designs. IEEE Trans Inf Theory 45:1456–1467

    Article  MathSciNet  MATH  Google Scholar 

  • Tirkkonen O, Hottinen A (2002) Square matrix embeddable STBC for complex signal constellations Space-time block codes from orthogonal design. IEEE Trans Inf Theory 48(2):384–395

    Article  MATH  Google Scholar 

  • Yang Z, Zhang C, Deng J, Lu W (2011) Orthonormal expansion L1-minimization algorithms for compressed sensing. IEEE Trans Signal Process 59(12):6285–6290

    Article  MathSciNet  Google Scholar 

  • Zhu H, Yang G, Chen W (2012) Efficient inverse Cholesky factorization for Alamouti matrices in G-STBC and Alamouti-like matrices in OMP. In: 76th vehicular technology conference (VTC ’12-Fall), proceedings, Qubec City, Canada, September 2012

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ankita Pramanik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A., Maity, S.P. CS reconstruction in MIMO channel using square complex orthogonal STB codes. Microsyst Technol 23, 4289–4306 (2017). https://doi.org/10.1007/s00542-016-3240-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3240-5

Keywords

Navigation