Advertisement

Microsystem Technologies

, Volume 23, Issue 8, pp 3271–3280 | Cite as

The effects of optical and material properties on designing of a photonic crystal mechanical sensor

  • Longqiu LiEmail author
  • Tianlong Li
  • Fengtong Ji
  • Wenping Song
  • Guangyu Zhang
  • Yao Li
Technical Paper

Abstract

Photonic crystal nanocavities, which can be used to localize electromagnetic fields in a low refractive index region, hold great promise in fabricating micromechanical sensors for their potential applications in physical, chemical and biological engineering. In this paper, effects of optical and material properties on the performance of three different types of photonic crystal based mechanical sensors, i.e., force, displacement, and strain sensors, are investigated. The microcantilevers of sensors are made in Si and Si/SiO2 and exhibited in air and water atmosphere. As we found, both the resonant wavelength and the resonant wavelength shift for microcantilever mechanical sensors exhibit a linear relationship to the signal detection parameters (i.e., force, displacement, and strain) both in air and water. The sensitivity of force and strain sensors operated in water is higher than that in air. Si/SiO2 bilayer microcantilever sensor shows a higher sensitivity in force detection, whereas the Si cantilever sensor shows a higher sensitivity in strain and vertical displacement detection. The optical, material and mechanical properties of sensor material have great effect on the sensitivity of the new photonic crystal based microcantilever mechanical sensor.

Keywords

Photonic Crystal Wavelength Shift Finite Difference Time Domain Resonant Wavelength Mechanical Sensor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to acknowledge the support of the Foundation for Innovative Research Groups of the Natural Science Foundation of China (51521003 and 51175129). This authors are also thanks the support from the special financial grant from the China Postdoctoral Science Foundation (2012T50339). We also gratefully acknowledge the financial support provided by the Program of Introducing Talents of Discipline to Universities (Grant No. B07018) and the Self-Planned Task (NO. SKLRS201607C) of State Key Laboratory of Robotics and System (HIT).

References

  1. Chew X, Zhou G, Yu H, Chau F, Deng J, Loke Y, Tang X (2010) Opt Express 18:22232CrossRefGoogle Scholar
  2. Huang M (2003) Int J Solids Struct 40:1615CrossRefGoogle Scholar
  3. Jagerska J, Zhang H, Diao Z, Thomas N, Houdre R (2010) Opt Lett 35:2523CrossRefGoogle Scholar
  4. Kramper P, Agio M, Soukoulis C, Birner A, Müller F, Wehrspohn R, Gösele U, Sandoghdar V (2004) Phys Rev Lett 92:113903CrossRefGoogle Scholar
  5. Kwon M, Kim J, Kim K, Jung G, Lim W, Kim S, Park S (2013) ECS J Solid State Sci Tech P13Google Scholar
  6. Lee C, Thillaigovindan J (2009) Appl Optic 48:1797CrossRefGoogle Scholar
  7. Levy O, Steinberg B, Nathan M, Boag A (2005) Appl Phys Lett 86:104102CrossRefGoogle Scholar
  8. Li T, Li L, Zhang G (2014) ECS J Solid State Sci Tech. 3:146CrossRefGoogle Scholar
  9. Liu X, Zhang Y, Ge D, Zhao J, Li Y, Endres F (2012) Phys Chem Chem Phys 14:5100CrossRefGoogle Scholar
  10. Liu Q, Tian H, Yang D, Zhou J, Yang Y, Ji Y (2014) Sens Actuators, A 216:223CrossRefGoogle Scholar
  11. Mai T, Hsiao F, Lee C, Xiang W, Chen C, Choi W (2011) Sens Actuators, A 165:16CrossRefGoogle Scholar
  12. Meng X, Al-Salman R, Zhao J, Borissenko N, Li Y, Endres F (2009) Angew Chem Int Ed 48:2703CrossRefGoogle Scholar
  13. Nielson G, Seneviratne D, Lopez-Royo F, Rakich P, Avrahami Y, Watts M, Haus H, Tuller H, Barbastathis G (2005) IEEE Photonic Tech L 17:1190CrossRefGoogle Scholar
  14. Pineda M, Chan L, Kuhlenschmidt T, Choi C, Kuhlenschmidt M, Cunningham B (2009) Sens J IEEE 9:470CrossRefGoogle Scholar
  15. Radulović K, Jakšić Z, Djurić Z (2004) Proc II international symposium light metals and composite materials, pp 19Google Scholar
  16. Schmidt B, Almeida V, Manolatou C, Preble S, Lipson M (2004) Appl Phys Lett 85:4854CrossRefGoogle Scholar
  17. Stomeo T, Grande M, Qualtieri A, Passaseo A, Salhi A, Vittorio M, Biallo D, D’orazio A, Sario M, Marrocco V, Petruzzelli V, Prudenzano F (2007) Microelectron Eng 84:1450Google Scholar
  18. Tsangarides C, Yetisen A, Vasconcellos F, Montelongo Y, Qasim M, Wilkinson T, Lowe C, Butt H (2014) RSC Adv 4:10454CrossRefGoogle Scholar
  19. Tung B, Dao D, Susumu S, Nguyen H, Rogge S, Salemink H (2010) Sens IEEE 2585Google Scholar
  20. Tung B, Dao D, Ikeda T, Kanamori Y, Hane K, Susumu S (2011) Opt Express 19:8821CrossRefGoogle Scholar
  21. Xiang W, Lee C (2009) IEEE J Sel Top Quantum Electron 15:1323CrossRefGoogle Scholar
  22. Xu Z, Cao L, Gu C, He Q, Jin G (2006) Opt Express 14:298CrossRefGoogle Scholar
  23. Yablonovitch E (1987) Phys Rev Lett 58:2059CrossRefGoogle Scholar
  24. Yang Y, Yang D, Tian H, Ji Y (2013) Sens Actuators, A 193:149CrossRefGoogle Scholar
  25. Yang Y, Tian H, Yang D, Wu N, Zhou J, Liu Q, Ji Y (2014) Sens Actuators, A 209:33CrossRefGoogle Scholar
  26. Yao J, Leuenberger D, Lee M, Wu M (2007) IEEE J Sel Top Quantum Electr 13:202CrossRefGoogle Scholar
  27. Zheng H, Wu K (2013) ECS J Solid State Sci 2:R241CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Longqiu Li
    • 1
    • 2
    Email author
  • Tianlong Li
    • 1
  • Fengtong Ji
    • 1
  • Wenping Song
    • 1
  • Guangyu Zhang
    • 1
  • Yao Li
    • 2
    • 3
  1. 1.School of Mechatronics EngineeringHarbin Institute of TechnologyHarbinChina
  2. 2.Postdoc Station of Material Science and EngineeringHarbin Institute of TechnologyHarbinChina
  3. 3.Center for Composite Materials and StructureHarbin Institute of TechnologyHarbinChina

Personalised recommendations