Skip to main content
Log in

Research on a micromachined flexible hot-wire sensor array for underwater wall shear stress measurement

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper reports an innovative flexible hot-wire senor microarray and its experimental studies for underwater wall shear stress measurement. 20 parallel channels of the hot-wire sensor are embedded between two polyimide layers for curved surface applications, which is fabricated based on micromachining processes, including platinum sputtering, nickel electroplating, etc. An accurate method to calculate the conversion factor of the compensation loop is proposed and verified for the temperature-compensated circuit. An average temperature coefficient of resistance (TCR) is measured 2136.7 ppm/°C with linearity better than 0.05 % for platinum thermal resistors. Output instabilities of 0.22 and 0.63 mV are obtained in static flow and moving flow, respectively. The feasibility of the hot-wire sensors for detecting underwater wall shear stress is verified with an average sensitivity of 0.0123 \({\text{V}}^{2} /{\text{Pa}}^{1/3}.\) According to the experiment results, the flexible sensor microarray is very promising for characterizing underwater wall shear stress distributions in the boundary layer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  • Barlian AA, Narain R, Li JT, Quance CE, Ho AC, Mukundan V, Pruitt BL (2006) Piezoresistive MEMS underwater shear stress sensors. Micro Electro Mech Syst (MEMS) 2006:626–629

    Google Scholar 

  • Barlian AA, Park SJ, Mukundan V, Pruitt BL (2007) Design and characterization of microfabricated piezoresistive floating element-based shear stress sensors. Sens Actuators A Phys 134(1):77–87

    Article  Google Scholar 

  • Chandrasekharan V, Sells J, Meloy J, Arnold DP, Sheplak M (2011) A microscale differential capacitive direct wall-shear-stress sensor. J Microelectromech Syst 20(3):622–635

    Article  Google Scholar 

  • Große S, Schröder W (2009) Two-dimensional visualization of turbulent wall shear stress using micropillars. AIAA J 47(2):314–321

    Article  Google Scholar 

  • Kuo JTW, Yu L, Meng E (2012) Micromachined thermal flow sensors—a review. Micromachines 3(3):550–573

    Article  Google Scholar 

  • Kurabayashi K, Asheghi M, Touzelbaev M, Goodson KE (1999) Measurement of the thermal conductivity anisotropy in polyimide films. J Microelectromech Syst 8(2):180–191

    Article  Google Scholar 

  • Laghrouche M, Adane A, Boussey J, Ameur S, Meunier D, Tardu S (2005) A miniature silicon hot wire sensor for automatic wind speed measurements. Renew Energ 30(12):1881–1896

    Article  Google Scholar 

  • Lin Q, Jiang FK, Wang XQ, Xu Y, Han ZG, Tai YC, Lew J, Ho CM (2004) Experiments and simulations of MEMS thermal sensors for wall shear-stress measurements in aerodynamic control applications. J Micromech Microeng 14(12):1640

    Article  Google Scholar 

  • Lin Q, Xu Y, Jiang FK, Tai YC, Ho CM (2005) A parametrized three-dimensional model for MEMS thermal shear-stress sensors. J Microelectromech Syst 14(3):625–633

    Article  Google Scholar 

  • Liu C, Huang JB, Zhu ZA, Jiang FK, Tung S, Tai YC, Ho CM (1999) A micromachined flow shear-stress sensor based on thermal transfer principles. J Microelectromech Syst 8(1):90–99

    Article  Google Scholar 

  • Ma BH, Ma CY (2016) A MEMS surface fence for wall shear stress measurement with high sensitivity. Microsyst Technol 22(2):239–246

    Article  Google Scholar 

  • Ma BH, Ren JZ, Deng JJ, Yuan WZ (2010) Flexible thermal sensor array on PI film substrate for underwater applications. Micro Electro Mech Syst (MEMS) 2010:679–682

    Google Scholar 

  • Naughton JW, Sheplak M (2002) Modern developments in shear-stress measurement. Prog Aerosp Sci 38(6):515–570

    Article  Google Scholar 

  • Otugen V, Sheverev V (2010) Micro-optical wall shear stress sensor. US Patent 7,701,586 2010-4-20

  • Papen T, Buder U, Ngo HD, Obermeier E (2004) A second generation MEMS surface fence sensor for high resolution wall shear stress measurement. Sens Actuators A Phys 113(2):151–155

    Article  Google Scholar 

  • Sosna C, Buchner R, Lang W (2010) A temperature compensation circuit for thermal flow sensors operated in constant-temperature-difference mode. IEEE T Instrum Meas 59(6):1715–1721

    Article  Google Scholar 

  • Tang R, Huang H, Yang YM, Oiler J, Liang M, Yu H (2013) Three-dimensional flexible thermal sensor for intravascular flow monitoring. IEEE Sens J 13(10):3991–3998

    Article  Google Scholar 

  • Tang J, Liu W, Zhang WP, Sun YM, Chen HH (2016) An integrated temperature-compensated flexible shear-stress sensor microarray with concentrated leading-wire. Rev Sci Instrum 87(2):025001

    Article  Google Scholar 

  • Tian YK, Xie H, Huang H, Sun HL, Zhang N, Shen X (2015) Calibration of MEMS wall shear-stress-sensors array for underwater applicaions. J Exp Fluid Mech 29(2):8–12 (in Chinese)

    Google Scholar 

  • Varma S, Voldman J (2015) A cell-based sensor of fluid shear stress for microfluidics. Lab Chip 15(6):1563–1573

    Article  Google Scholar 

  • Wang YH, Chen CP, Chang CM, Lin CP, Lin CH, Fu LM, Lee CY (2009) MEMS-based gas flow sensors. Microfluid Nanofluid 6(3):333–346

    Article  Google Scholar 

  • Xu Y, Jiang FK, Lin Q, Clendenen J, Tung S, Tai YC (2002) Underwater shear-stress sensor. Micro Electro Mechan Syst (MEMS) 2002:340–343

    Google Scholar 

  • Xu Y, Lin Q, Lin G, Katragadda R, Jiang F, Tung S, Tai YC (2005) Micromachined thermal shear-stress sensor for underwater applications. J Microelectromech Syst 14(5):1023–1030

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Y. K. Tian, H. Xie, H. L. Sun and H. Huang for their assistance on underwater testing of the sensor microarray. This research work was supported by National Natural Science Foundation of China (61574093), Program for New Century Excellent Talents in University of Ministry of Education of China (NCET-10-0583), Science Fund Program (2013ZC57003), PreResearch Fund (9140A14010511JW0304) and National Key Laboratory of Science and Technology on Nano/Micro Fabrication (9140C790405110C7904).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weiping Zhang or Wu Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, J., Zhang, W., Liu, W. et al. Research on a micromachined flexible hot-wire sensor array for underwater wall shear stress measurement. Microsyst Technol 23, 2781–2788 (2017). https://doi.org/10.1007/s00542-016-3110-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3110-1

Keywords

Navigation