Skip to main content
Log in

A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper develops a size-dependent nonlinear third-order shear-deformable model for the dynamic analysis of microplates. Taking into account in-plane and out-of-plane displacements and inertia as well as rotations (via using the third-order shear deformation theory) and the modified couple stress theory, the Lagrange equations are employed to derive the equations of motion. An assumed-mode technique is applied to the expressions for the elastic strain energy of the microplate, the elastic potential energy due to the translational springs, the kinetic energy of the microplate, the energy dissipation function due to damping, and the work of a harmonically varying external loading on the microplate; these expressions are then inserted in the Lagrange equations in order to obtain the discretised equations of motion as nonlinear coupled functions of generalized coordinates. The pseudo-arclength continuation technique and a direct time-integration are employed to solve these equations and to obtain the generalized coordinates, hence system responses, numerically. Apart from the nonlinear analysis, a linear analysis is conducted by means of an eigenvalue analysis. The motion behaviour of the system is analysed and the importance of employing the modified couple stress theory, rather than the classical continuum theory, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aboelkassem Y, Nayfeh AH, Ghommem M (2010) Bio-mass sensor using an electrostatically actuated microcantilever in a vacuum microchannel. Microsyst Technol 16(10):1749–1755

    Article  Google Scholar 

  • Abouelregal AE, Zenkour AM (2015) Generalized thermoelastic vibration of a microbeam with an axial force. Microsyst Technol 21(7):1427–1435

    Article  Google Scholar 

  • Akgöz B, Civalek Ö (2013) Longitudinal vibration analysis of strain gradient bars made of functionally graded materials (FGM). Compos Part B Eng 55:263–268

    Article  MATH  Google Scholar 

  • Akgöz B, Civalek Ö (2014) Shear deformation beam models for functionally graded microbeams with new shear correction factors. Compos Struct 112:214–225

    Article  Google Scholar 

  • Asghari M (2012) Geometrically nonlinear micro-plate formulation based on the modified couple stress theory. Int J Eng Sci 51:292–309

    Article  MathSciNet  Google Scholar 

  • Ashoori Movassagh A, Mahmoodi MJ (2013) A micro-scale modeling of Kirchhoff plate based on modified strain-gradient elasticity theory. Eur J Mech A Solids 40:50–59

    Article  MathSciNet  Google Scholar 

  • Civalek Ö, Akgöz B (2013) Vibration analysis of micro-scaled sector shaped graphene surrounded by an elastic matrix. Comput Mater Sci 77:295–303

    Article  Google Scholar 

  • Demir Ç, Civalek Ö (2013) Torsional and longitudinal frequency and wave response of microtubules based on the nonlocal continuum and nonlocal discrete models. Appl Math Modell 37(22):9355–9367

    Article  Google Scholar 

  • Eshraghi I, Dag S, Soltani N (2015) Consideration of spatial variation of the length scale parameter in static and dynamic analyses of functionally graded annular and circular micro-plates. Compos Part B Eng 78:338–348

    Article  Google Scholar 

  • Farokhi H, Ghayesh MH (2015) Thermo-mechanical dynamics of perfect and imperfect Timoshenko microbeams. Int J Eng Sci 91:12–33

    Article  MathSciNet  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF et al (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  • Fu YM, Zhang J, Bi RG (2009) Analysis of the nonlinear dynamic stability for an electrically actuated viscoelastic microbeam. Microsyst Technol 15(5):763–769

    Article  Google Scholar 

  • Ghayesh MH, Kazemirad S, Reid T (2012) Nonlinear vibrations and stability of parametrically exited systems with cubic nonlinearities and internal boundary conditions: a general solution procedure. Appl Math Model 36(7):3299–3311

    Article  MathSciNet  MATH  Google Scholar 

  • Ghayesh M, Farokhi H, Amabili M (2013) Coupled nonlinear size-dependent behaviour of microbeams. Appl Phys A 112(2):329–338

    Article  MATH  Google Scholar 

  • Ghayesh MH, Farokhi H, Amabili M (2014) In-plane and out-of-plane motion characteristics of microbeams with modal interactions. Compos B Eng 60:423–439

    Article  Google Scholar 

  • Ghorbanpour Arani A, Shajari AR, Atabakhshian V et al (2013) Nonlinear dynamical response of embedded fluid-conveyed micro-tube reinforced by BNNTs. Compos Part B Eng 44(1):424–432

    Article  Google Scholar 

  • Huang Y, Yang L-E, Luo Q-Z (2013) Free vibration of axially functionally graded Timoshenko beams with non-uniform cross-section. Compos B Eng 45(1):1493–1498

    Article  Google Scholar 

  • Jamalpoor A, Hosseini M (2015) Biaxial buckling analysis of double-orthotropic microplate-systems including in-plane magnetic field based on strain gradient theory. Compos Part B Eng 75:53–64

    Article  Google Scholar 

  • Jomehzadeh E, Noori HR, Saidi AR (2011) The size-dependent vibration analysis of micro-plates based on a modified couple stress theory. Phys E 43(4):877–883

    Article  Google Scholar 

  • Ke LL, Yang J, Kitipornchai S et al (2013) Axisymmetric nonlinear free vibration of size-dependent functionally graded annular microplates. Compos B Eng 53:207–217

    Article  Google Scholar 

  • Kong S, Zhou S, Nie Z et al (2008) The size-dependent natural frequency of Bernoulli–Euler micro-beams. Int J Eng Sci 46(5):427–437

    Article  MATH  Google Scholar 

  • Lam DCC, Yang F, Chong ACM et al (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51(8):1477–1508

    Article  MATH  Google Scholar 

  • Li Y, Packirisamy M, Bhat RB (2008) Shape optimizations and static/dynamic characterizations of deformable microplate structures with multiple electrostatic actuators. Microsyst Technol 14(2):255–266

    Article  Google Scholar 

  • Ma HM, Gao XL, Reddy JN (2008) A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J Mech Phys Solids 56(12):3379–3391

    Article  MathSciNet  MATH  Google Scholar 

  • Nabian A, Rezazadeh G, Almassi M et al (2013) On the stability of a functionally graded rectangular micro-plate subjected to hydrostatic and nonlinear electrostatic pressures. Acta Mech Solida Sin 26(2):205–220

    Article  Google Scholar 

  • Rahaeifard M (2015) Size-dependent torsion of functionally graded bars. Compos Part B Eng 82:205–211

    Article  Google Scholar 

  • Ramezani S (2012) A shear deformation micro-plate model based on the most general form of strain gradient elasticity. Int J Mech Sci 57(1):34–42

    Article  MathSciNet  Google Scholar 

  • Ramezani S (2013) Nonlinear vibration analysis of micro-plates based on strain gradient elasticity theory. Nonlinear Dyn 73(3):1399–1421

    Article  MathSciNet  MATH  Google Scholar 

  • Rao SS (2004) Mechanical vibrations. Pearson Prentice Hall, Upper Saddle River

    Google Scholar 

  • Reddy JN, Kim J (2012) A nonlinear modified couple stress-based third-order theory of functionally graded plates. Compos Struct 94(3):1128–1143

    Article  Google Scholar 

  • Rezazadeh G, Fathalilou M, Shabani R (2009) Static and dynamic stabilities of a microbeam actuated by a piezoelectric voltage. Microsyst Technol 15(12):1785–1791

    Article  Google Scholar 

  • Rokni H, Milani AS, Seethaler RJ (2012) 2D optimum distribution of carbon nanotubes to maximize fundamental natural frequency of polymer composite micro-beams. Compos B Eng 43(2):779–785

    Article  Google Scholar 

  • Sahmani S, Ansari R, Gholami R et al (2013) Dynamic stability analysis of functionally graded higher-order shear deformable microshells based on the modified couple stress elasticity theory. Compos B Eng 51:44–53

    Article  Google Scholar 

  • Sahmani S, Bahrami M, Ansari R (2014) Nonlinear free vibration analysis of functionally graded third-order shear deformable microbeams based on the modified strain gradient elasticity theory. Compos Struct 110:219–230

    Article  Google Scholar 

  • Tavakolian F, Farrokhabadi A, Mirzaei M (2015) Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory. Microsyst Technol 1–10. doi:10.1007/s00542-015-2785-z

  • Thai H-T, Choi D-H (2013) Size-dependent functionally graded Kirchhoff and Mindlin plate models based on a modified couple stress theory. Compos Struct 95:142–153

    Article  Google Scholar 

  • Wang B, Zhou S, Zhao J et al (2011) A size-dependent Kirchhoff micro-plate model based on strain gradient elasticity theory. Eur J Mech A Solids 30(4):517–524

    Article  MATH  Google Scholar 

  • Yang F, Chong ACM, Lam DCC et al (2002) Couple stress based strain gradient theory for elasticity. Int J Solids Struct 39(10):2731–2743

    Article  MATH  Google Scholar 

  • Zhang B, He Y, Liu D et al (2015) A size-dependent third-order shear deformable plate model incorporating strain gradient effects for mechanical analysis of functionally graded circular/annular microplates. Compos Part B Eng 79:553–580

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mergen H. Ghayesh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghayesh, M.H., Farokhi, H., Hussain, S. et al. A size-dependent nonlinear third-order shear-deformable dynamic model for a microplate on an elastic medium. Microsyst Technol 23, 3281–3299 (2017). https://doi.org/10.1007/s00542-016-3096-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-3096-8

Keywords

Navigation