Skip to main content
Log in

Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The static and dynamic behavior of a curved single-walled carbon nanotube which is under twist–bending couple based on nonlocal theory is analyzed. The nonlocal theory is used to model the mechanical behavior of structure in small scale. The obtained differential equations are solved using a simply supported boundary condition and Navier analytical method. Moreover the twisted vibration and bending of curved nanotube is analyzed and also the armchair model is assumed in this study. The following parameters were studied in this paper: the effect of nonlocal parameter, the curved nanotube’s opening angel, the Young’s modulus and the mode number is studied. The results were verified with the previous literature which showed an excellent agreement. The results of this paper can be used as a benchmark for future investigations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Amelinckx S et al (1994) A formation mechanism for catalytically grown helix-shaped graphite nanotubes. Science 265:635–639

    Article  Google Scholar 

  • Ansari R, Sahmani S (2012) Small scale effect on vibrational response of single-walled carbon nanotubes with different boundary conditions based on nonlocal beam models. Commun Nonlinear Sci Numer Simul 17:1965–1979

    Article  MathSciNet  Google Scholar 

  • Anumandla V, Gibson RF (2006) A comprehensive closed form micromechanics model for estimating the elastic modulus of nanotube-reinforced composites. Compos A Appl Sci Manuf 37(12):2178–2185

    Article  Google Scholar 

  • Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Physica E 42(8):2058–2064

    Article  Google Scholar 

  • Baghdadi H et al (2015) Thermal effect on vibration characteristics of armchair and zigzag single-walled carbon nanotubes using nonlocal parabolic beam theory. Fuller Nanotub Carbon Nanostruct 23(3):266–272

    Article  Google Scholar 

  • Belabed Z et al (2014) An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates. Compos B Eng 60:274–283

    Article  Google Scholar 

  • Belkorissat I et al (2015) On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model. Steel Compos Struct 18(4):1063–1081

    Article  Google Scholar 

  • Bennoun M, Houari MSA, Tounsi A (2016) A novel five-variable refined plate theory for vibration analysis of functionally graded sandwich plates. Mech Adv Mater Struct 23(4):423–431

    Article  Google Scholar 

  • Berhan L, Yi Y, Sastry A (2004) Effect of nanorope waviness on the effective moduli of nanotube sheets. J Appl Phys 95(9):5027–5034

    Article  Google Scholar 

  • Besseghier A et al (2015) Nonlinear vibration properties of a zigzag single-walled carbon nanotube embedded in a polymer matrix. Adv Nano Res 3(1):029

    Article  Google Scholar 

  • Bounouara F et al (2016) A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation. Steel Compos Struct 20(2):227–249

    Article  Google Scholar 

  • Bradshaw R, Fisher F, Brinson L (2003) Fiber waviness in nanotube-reinforced polymer composites—II: modeling via numerical approximation of the dilute strain concentration tensor. Compos Sci Technol 63(11):1705–1722

    Article  Google Scholar 

  • Charlier J (2002) Defects in carbon nanotubes. Acc Chem Res 35:1063–1069

    Article  Google Scholar 

  • Chemi A et al (2015) Critical buckling load of chiral double-walled carbon nanotube using non-local theory elasticity. Adv Nano Res 3(4):193–206

    Article  Google Scholar 

  • Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–30

    Article  Google Scholar 

  • Eringen AC (1972) Nonlocal polar elastic continua. Int J Eng Sci 10(1):1–16

    Article  MathSciNet  MATH  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Eringen AC (1984) Theory of nonlocal elasticity and some applications. Defense Technical Information Center

  • Eringen AC (2002) Nonlocal continuum field theories. Springer, New york

  • Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Falvo M et al (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389:582–584

    Article  Google Scholar 

  • Farshi B, Assadi A, Alinia-Ziazi A (2010) Frequency analysis of nanotubes with consideration of surface effects. Appl Phys Lett 96:093105

    Article  Google Scholar 

  • Fisher F, Bradshaw R, Brinson L (2003) Fiber waviness in nanotube-reinforced polymer composites—I: modulus predictions using effective nanotube properties. Compos Sci Technol 63(11):1689–1703

    Article  Google Scholar 

  • Flahaut E et al (2003) Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem Commun 12:1442–1443

    Article  Google Scholar 

  • Ghadiri M, Shafiei N (2015) Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol, 1–15

  • Ghadiri M, Shafiei N, Safarpour H (2016) Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol, 1–21

  • Gibson RF, Ayorinde EO, Wen Y-F (2007) Vibrations of carbon nanotubes and their composites: a review. Compos Sci Technol 67(1):1–28

    Article  Google Scholar 

  • Hamidi A et al (2015) A sinusoidal plate theory with 5-unknowns and stretching effect for thermomechanical bending of functionally graded sandwich plates. Steel Compos Struct 18(1):235–253

    Article  Google Scholar 

  • Hebali H et al (2014) New quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. J Eng Mech 140(2):374–383

    Article  Google Scholar 

  • Hosseini SAH, Rahmani O (2016a) Free vibration of shallow and deep curved FG nanobeam via nonlocal Timoshenko curved beam model. Appl Phys A 122(3):1–11

    Article  Google Scholar 

  • Hosseini A, Rahmani O (2016) Surface effects on buckling of double nanobeam system based on nonlocal Timoshenko model. Int J Struct Stab Dyn 16(10):1550077

    Article  MathSciNet  MATH  Google Scholar 

  • Iijima S, Ichihashi T, Ando Y (1992) Pentagons, heptagons and negative curvature in graphite microtubule growth. Nature 356:776–778

    Article  Google Scholar 

  • Koochi A, Farrokhabadi A, Abadyan M (2015) Modeling the size dependent instability of NEMS sensor/actuator made of nano-wire with circular cross-section. Microsyst Technol 21(2):355–364

    Article  Google Scholar 

  • Liu J et al (1997) Fullerene ‘crop circles’. Nature 385:780–781

    Article  Google Scholar 

  • Love AEH (2013) A treatise on the mathematical theory of elasticity, vol 1. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Mahi A, Tounsi A (2015) A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates. Appl Math Model 39(9):2489–2508

    Article  MathSciNet  Google Scholar 

  • Mahmoud S et al (2015) Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect. Steel Compos Struct 18(2):425

    Article  Google Scholar 

  • Martel R et al (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87:25–29

    Article  Google Scholar 

  • McEuen PL, Fuhrer MS, Park H (2002) Single-walled carbon nanotube electronics. IEEE Trans Nanotechnol 1:78–85

    Article  Google Scholar 

  • Meziane MAA, Abdelaziz HH, Tounsi A (2014) An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions. J Sandwich Struct Mater 16(3):293–318

    Article  Google Scholar 

  • Miandoab EM, Yousefi-Koma A, Pishkenari HN (2015) Nonlocal and strain gradient based model for electrostatically actuated silicon nano-beams. Microsyst Technol 21(2):457–464

    Article  MATH  Google Scholar 

  • Mir M, Hosseini A, Majzoobi G (2008) A numerical study of vibrational properties of single-walled carbon nanotubes. Comput Mater Sci 43:540–548

    Article  Google Scholar 

  • Mohammadimehr M et al (2011) Buckling analysis of double-walled carbon nanotubes embedded in an elastic medium under axial compression using non-local Timoshenko beam theory. Proc Inst Mech Eng Part C J Mech Eng Sci 225:498–506

    Google Scholar 

  • Mousavi Z, Arani AG, Mohammadimehr M (2010) Small scale effect on the buckling analysis of a double-walled carbon nanotube under external radial pressure using energy method. Amirkabir J Sci Technol 42:11–16

    Google Scholar 

  • Neves A et al (2012) A quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates. Compos Struct 94(5):1814–1825

    Article  Google Scholar 

  • Qian D et al (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76(20):2868–2870

    Article  Google Scholar 

  • Rahmani O, Asemani SS, Hosseini SAH (2015a) Study the buckling of functionally graded nanobeams in elastic medium with surface effects based on a nonlocal theory. J Comput Theor Nanosci 12(10):3162–3170

    Article  Google Scholar 

  • Rahmani O, Hosseini A, Noroozi Moghaddam MH (2015b) Torsional vibration of cracked nanobeam based on nonlocal stress theory with various boundary conditions: an analytical study. Int J Appl Mech 7(3):1550036

    Article  Google Scholar 

  • Rahmani O, Hosseini SAH, Hayati H (2016a) Frequency analysis of curved nano-sandwich structure based on a nonlocal model. Mod Phys Lett 30(10):1650136. doi:10.1142/S0217984916501360

    Article  MathSciNet  Google Scholar 

  • Rahmani O, Asemani SS, Hosseini SA (2016b) Study the surface effect on the buckling of nanowires embedded in Winkler–Pasternak elastic medium based on a nonlocal theory. J Nanostruct 6(1):87–92

    Google Scholar 

  • Ranjbartoreh A, Ghorbanpour A, Soltani B (2007) Double-walled carbon nanotube with surrounding elastic medium under axial pressure. Physica E 39:230–239

    Article  Google Scholar 

  • Rao SS (2007) Vibration of continuous systems. Wiley, Hoboken, NJ

  • Rao S, Sundararajan V (1970) Erratum:“Inplane flexural vibrations of circular rings”(Journal of Applied Mechanics, 1969, 36, pp. 620–625). J Appl Mech 37(4):1208

    Article  Google Scholar 

  • Reddy J (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45:288–307

    Article  MATH  Google Scholar 

  • Semmah A et al (2015) Effect of the chirality on critical buckling temperature of zigzag single-walled carbon nanotubes using the nonlocal continuum theory. Fuller Nanotub Carbon Nanostruct 23(6):518–522

    Article  Google Scholar 

  • Sourki R, Hoseini SAH (2016) Free vibration analysis of size-dependent cracked microbeam based on the modified couple stress theory. Appl Phys A 122(4):1–11

    Article  Google Scholar 

  • Tang H-L, Li D-K, Zhou S-M (2014) Vibration of horn-shaped carbon nanotube with attached mass via nonlocal elasticity theory. Physica E 56:306–311

    Article  Google Scholar 

  • Terrones M et al (2000) Coalescence of single-walled carbon nanotubes. Science 288:1226–1229

    Article  Google Scholar 

  • Tounsi A, Houari MSA, Benyoucef S (2013a) A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates. Aerosp Sci Technol 24(1):209–220

    Article  Google Scholar 

  • Tounsi A et al (2013b) Nonlocal effects on thermal buckling properties of double-walled carbon nanotubes. Adv Nano Res 1(1):1–11

    Article  MathSciNet  Google Scholar 

  • Tounsi A et al (2015a) A new simple shear and normal deformations theory for functionally graded beams. Steel Compos Struct 18(2):409

    Article  Google Scholar 

  • Tounsi A et al (2015b) A mechanical response of functionally graded nanoscale beam: an assessment of a refined nonlocal shear deformation theory beam theory. Struct Eng Mech. 54(4):693

    Article  Google Scholar 

  • Wang CM, Duan W (2008) Free vibration of nanorings/arches based on nonlocal elasticity. J Appl Phys 104:014303

    Article  Google Scholar 

  • Wang L, Hu H (2005) Flexural wave propagation in single-walled carbon nanotubes. Phys Rev B 71(19):195412

    Article  Google Scholar 

  • Wang Q, Wang C (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18(7):075702

    Article  Google Scholar 

  • Wang ZL, Poncharal P, De Heer W (2000) Nanomeasurements of individual carbon nanotubes by in situ TEM. Pure Appl Chem 72(1–2):209–219

    Google Scholar 

  • Xu R (2012) Mechanical characteristics of nanoarches and nanobeam-columns based on nonlocal elasticity theory

  • Yahia SA et al (2015) Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories. Struct Eng Mech 53(6):1143

    Article  Google Scholar 

  • Yang J, Ke L, Kitipornchai S (2010a) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E 42(5):1727–1735

    Article  Google Scholar 

  • Yang J, Ke L, Kitipornchai S (2010b) Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory. Physica E 42:1727–1735

    Article  Google Scholar 

  • Yao Z et al (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276

    Article  Google Scholar 

  • Zavalniuk V, Marchenko S (2011) Theoretical analysis of telescopic oscillations in multi-walled carbon nanotubes. Low Temp Phys 37:337–342

    Article  Google Scholar 

  • Zenkour AM (2016) Nonlocal thermoelasticity theory without energy dissipation for nano-machined beam resonators subjected to various boundary conditions. Microsyst Technol, 1–11

  • Zhang X et al (1994) The texture of catalytically grown coil-shaped carbon nanotubules. EPL (Europhys Lett) 27(2):141

    Article  Google Scholar 

  • Zidi M et al (2014) Bending analysis of FGM plates under hygro-thermo-mechanical loading using a four variable refined plate theory. Aerosp Sci Technol 34:24–34

    Article  Google Scholar 

Download references

Acknowledgments

The Authors would like to acknowledge that this research received no specific grant from any funding agency in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasti Hayati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hayati, H., Hosseini, S.A. & Rahmani, O. Coupled twist–bending static and dynamic behavior of a curved single-walled carbon nanotube based on nonlocal theory. Microsyst Technol 23, 2393–2401 (2017). https://doi.org/10.1007/s00542-016-2933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2933-0

Keywords

Navigation