Microsystem Technologies

, Volume 22, Issue 7, pp 1811–1820 | Cite as

Optimization method for designing multimodal piezoelectric MEMS energy harvesters

Technical Paper

Abstract

Energy harvesters (EH) are devices that convert environmental energy (i.e. thermal, vibrational or electromagnetic) into electrical energy. One of the most promising solutions consists in transforming energy from vibrations using a piezoelectric material placed onto a mechanical resonator. The intrinsic drawback of this solution is the typically high quality factor of the device which works effectively only within a narrow bandwidth. To overcome this limitation it is possible to tune the mechanical resonance of the device, to introduce non-linear elements (e.g. magnets) or to design the mechanical resonator with a multimodal behaviour. In ultra low power applications the aspect of integration is of utmost importance and so micro electro-mechanical systems (MEMS)-based EHs are preferable. Within this scenario the multimodal solution is the more suitable considering the technological constraints imposed by the micromachining manufacturing process. In this paper, we describe the optimization of a given multimodal mechanical geometry in order to maximize the number of resonances within a certain frequency band. The proposed optimization is finite element method (FEM)-based and it uses modal and harmonic simulations for both selecting the useful modes and then designing the device in a way that presents those modes within a predefined frequency range. This mechanical optimization is the first step for maximizing the output power of a multimodal piezoelectric energy harvester. The second step focuses on the optimization of the piezoelectric transducer geometry targeting the resonant modes defined in the first step. The optimization procedure is applied to an array of cantilever used as a case study.

References

  1. Adams SG, Bertscht FM, Shawt KA, Hartwell PG, MacDonald NC, Moon FC (1995) Capacitance based tunable micromechanical resonators. In: The 8th international conference on solid-state sensors and actuators, and eurosensors IX, pp 438–441. doi:10.1088/0960-1317/8/1/003
  2. Dini M, Romani A, Filippi M, Bottarel V, Ricotti G, Tartagni M (2015) A nanocurrent power management ic for multiple heterogeneous energy harvesting sources. IEEE Trans Power Electron 30:5665–5680. doi:10.1109/TPEL.2014.2379622 CrossRefGoogle Scholar
  3. Erturk A, Inman DJ (2008) On mechanical modelling of cantilevered piezoelectric vibration energy harvesting. J Intell Mater Syst Struct 19:1311–1325. doi:10.1177/1045389X07085639 CrossRefGoogle Scholar
  4. Galchev T, Kim H, Najafi K (2009) A parametric frequency increased power generator for scavenging low frequency ambient vibrations. Eurosensors XXIII Conference Procedia Chemestry 1:1439–1442. doi:10.1016/j.proche.2009.07.359 Google Scholar
  5. Iannacci J, Serra E, Di Criscienzo R, Sordo G, Gottardi M, Borrielli A, Bonaldi M, Kuenzig T, Schrag G, Pandraud G, Sarro PM (2014) Multi-modal vibration based MEMS energy harvesters for ultra-low power wireless functional nodes. Microsyst Technol 20:627–640. doi:10.1007/s00542-013-1998-2 CrossRefGoogle Scholar
  6. Khan FU, Izhar (2013) Electromagnetic-based acoustic energy harvester. In: Multi topic conference (INMIC), 2013 16th International, pp 125–130. doi:10.1109/INMIC.2013.6731337
  7. Leland ES, Wright PK (2006) Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload. Smart Mater Struct 15:1413–1420. doi:10.1088/0964-1726/15/5/030 CrossRefGoogle Scholar
  8. Mitcheson P, Kabey N, Miao P, Yeatman E, Homes A, Green T (2003) Analysis and optimization of MEMS on-chip power supply of slow moving sensors. Eurosensors 03:48–51Google Scholar
  9. Priya S, Inman DJ (eds) (2009) Energy harvesting technologies. Springer, New YorkGoogle Scholar
  10. Roundy S, Wright P (2004) A piezoelectric vibration based generator for wireless electronics. Smart Mater Struct 13:1131–1142. doi:10.1088/0964-1726/13/5/018 CrossRefGoogle Scholar
  11. Ruiz-Díez V et al (2013) Design and characterization of AlN-based in-plane microplate resonators. J Micromech Microeng 23:074003. doi:10.1088/0960-1317/23/7/074003 CrossRefGoogle Scholar
  12. Soliman MSM, Abdel-Rahman EM, El-Saadany EE, Mansour RR (2008) A wideband vibration-based energy harvester. J Micromech Microeng 18:755–758. doi:10.1088/0960-1317/18/11/115021 CrossRefGoogle Scholar
  13. Sordo G, Iannacci J, Serra E, Bonaldi M, Borrielli AL, Schneider M, Schmid U (2015) Study on the performance of tailored spring elements for piezoelectric MEMS energy harvesters. In: AISEM annual conference, 2015 XVIII, pp 1–4. doi: 10.1109/AISEM.2015.7066779
  14. Taylor GW, Burns JR, Kammann SA, Powers WB, Welsh TR (2001) The EneoPTIMIrgy Harvesting Eel: a small subsurface ocean/river power generator. IEEE J Oceanic Eng 26:539–547. doi:10.1109/48.972090 CrossRefGoogle Scholar
  15. White NM, Glynne-Jones P, Beepy SP (2001) A novel thick-film piezoelectric micro-generator. Smart Meter Struct 10:850–852. doi:10.1088/0964-1726/10/4/403 CrossRefGoogle Scholar
  16. Williams CB, Shearwood C, Harradine MA, Mellor PH, Britch TS, Yates RB (2001) Development of an electromagnetic micro-generator. IEEE Proc Circuits Dev Syst 148:337–342. doi:10.1049/ip-cds:20010525 CrossRefGoogle Scholar
  17. Xue H, Hu Y, Wang QM (2008) Broadband piezoelectric energy harvesting devices using multiple bimorphs with different operating frequencies. IEEE Trans Ultrason Ferroelectr Freq Control 55:2104–2108. doi:10.1109/TUFFC.903 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Center for Materials and Microsystems (CMM)Fondazione Bruno Kessler (FBK)TrentoItaly
  2. 2.Institute of Sensor and Actuator SystemsTU WienViennaAustria

Personalised recommendations