Skip to main content
Log in

Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This article presents a free vibration analysis of size-dependent functionally graded rotating nanobeams with all surface effects considerations on the basis of the nonlocal continuum model. By using constitutive differential model of Eringen, the nonlocal elastic behavior is described which enables the present model to become effective in design and analysis of nanoactuators and nanosensors. The material for this work is a functionally graded which according to power law distribution, it is assumed that its bottom surface is aluminum and the top one is silicon. Taking attention to Euler–Bernoulli beam theory, the modeled nanobeam and its equations of motion are derived using Hamilton’s principle. Novillity of this work is considering the effects of rotation and surface effects in addition to considering various boundary conditions of the FG nanobeam. The generalized differential quadrature method is used to discretize the model and to get a numerical approximation of the equation of motion. The model is validated by comparing the benchmark results with the obtained ones. Then influence of surfaces effects, nonlocal parameter, angular velocity, volume fraction index and boundary conditions on natural frequency ratio of the rotating FG nanobeams are investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Akgöz B, Civalek Ö (2012) Analysis of micro-sized beams for various boundary conditions based on the strain gradient elasticity theory. Arch Appl Mech 82(3):423–443

    Article  MATH  Google Scholar 

  • Aranda-Ruiz J, Loya J, Fernández-Sáez J (2012) Bending vibrations of rotating nonuniform nanocantilevers using the Eringen nonlocal elasticity theory. Compos Struct 94(9):2990–3001

    Article  Google Scholar 

  • Asghari M et al (2010) On the size-dependent behavior of functionally graded micro-beams. Mater Des 31(5):2324–2329

    Article  Google Scholar 

  • Asghari M et al (2011) Investigation of the size effects in Timoshenko beams based on the couple stress theory. Arch Appl Mech 81(7):863–874

    Article  MATH  Google Scholar 

  • Bath J, Turberfield AJ (2007) DNA nanomachines. Nat Nano 2(5):275–284

    Article  Google Scholar 

  • Bellman R, Casti J (1971) Differential quadrature and long-term integration. J Math Anal Appl 34(2):235–238

    Article  MathSciNet  MATH  Google Scholar 

  • Bellman R, Kashef B, Casti J (1972) Differential quadrature: a technique for the rapid solution of nonlinear partial differential equations. J Comput Phys 10(1):40–52

    Article  MathSciNet  MATH  Google Scholar 

  • Chen L et al (2012) Engineering controllable bidirectional molecular motors based on myosin. Nat Nano 7(4):252–256

    Article  Google Scholar 

  • Chen T, Chiu M-S, Weng C-N (2006) Derivation of the generalized Young-Laplace equation of curved interfaces in nanoscaled solids. J Appl Phys 100(7):074308

    Article  Google Scholar 

  • Chen Y, Zhang J, Zhang H (2015) Free vibration analysis of rotating tapered Timoshenko beams via variational iteration method. J Vib Control. doi:10.1177/1077546315576431

  • Chong A et al (2001) Torsion and bending of micron-scaled structures. J Mater Res 16(04):1052–1058

    Article  Google Scholar 

  • Dehrouyeh-Semnani AM (2015) The influence of size effect on flapwise vibration of rotating microbeams. Int J Eng Sci 94:150–163

    Article  MathSciNet  Google Scholar 

  • Ebrahimi F, Salari E (2015) Thermo-mechanical vibration analysis of nonlocal temperature-dependent FG nanobeams with various boundary conditions. Compos B Eng 78:272–290

    Article  Google Scholar 

  • Eltaher M et al (2013) Coupling effects of nonlocal and surface energy on vibration analysis of nanobeams. Appl Math Comput 224:760–774

    MathSciNet  MATH  Google Scholar 

  • Eltaher M, Emam SA, Mahmoud F (2012) Free vibration analysis of functionally graded size-dependent nanobeams. Appl Math Comput 218(14):7406–7420

    MathSciNet  MATH  Google Scholar 

  • Eltaher M, Emam SA, Mahmoud F (2013) Static and stability analysis of nonlocal functionally graded nanobeams. Compos Struct 96:82–88

    Article  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Fleck N et al (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42(2):475–487

    Article  Google Scholar 

  • Ghadiri M, Shafiei N (2015a) Nonlinear bending vibration of a rotating nanobeam based on nonlocal Eringen’s theory using differential quadrature method. Microsyst Technol. doi:10.1007/s00542-015-2662-9

  • Ghadiri M, Shafiei N (2015b) Vibration analysis of rotating nanoplate based on eringen nonlocal elasticity appling differential quadrature method. J Vib Control. doi:10.1177/1077546315627723

  • Goel A, Vogel V (2008) Harnessing biological motors to engineer systems for nanoscale transport and assembly. Nat Nano 3(8):465–475

    Article  Google Scholar 

  • Guo J et al (2015) Ultra-durable rotary micromotors assembled from nanoentities by electric fields. Nanoscale 7(26):11363–11370

    Article  Google Scholar 

  • Gurtin ME, Murdoch AI (1975) A continuum theory of elastic material surfaces. Arch Ration Mech Anal 57(4):291–323

    Article  MathSciNet  MATH  Google Scholar 

  • Gurtin ME, Murdoch AI (1978) Surface stress in solids. Int J Solids Struct 14(6):431–440

    Article  MATH  Google Scholar 

  • Gurtin M, Weissmüller J, Larche F (1998) A general theory of curved deformable interfaces in solids at equilibrium. Philos Magn A 78(5):1093–1109

    Article  Google Scholar 

  • Hosseini-Hashemi S, Nazemnezhad R, Bedroud M (2014) Surface effects on nonlinear free vibration of functionally graded nanobeams using nonlocal elasticity. Appl Math Model 38(14):3538–3553

    Article  MathSciNet  Google Scholar 

  • Lee Z et al (2006) Metallic NEMS components fabricated from nanocomposite Al–Mo films. Nanotechnology 17(12):3063

    Article  Google Scholar 

  • Lee LK et al (2010) Structure of the torque ring of the flagellar motor and the molecular basis for rotational switching. Nature 466(7309):996–1000

    Article  Google Scholar 

  • Lee H-L, Chang W-J (2010) Surface effects on frequency analysis of nanotubes using nonlocal Timoshenko beam theory. J Appl Phys 108(9):093503

    Article  Google Scholar 

  • Lei X-W et al (2012) Surface effects on the vibrational frequency of double-walled carbon nanotubes using the nonlocal Timoshenko beam model. Compos B Eng 43(1):64–69

    Article  Google Scholar 

  • Li J et al (2014) Rotation motion of designed nano-turbine. Sci Rep 4. doi:10.1038/srep05846

  • Lu P et al (2006) Dynamic properties of flexural beams using a nonlocal elasticity model. J Appl Phys 99(7):073510. doi:10.1063/1.2189213

    Article  Google Scholar 

  • Lubbe AS et al (2011) Control of rotor function in light-driven molecular motors. J Org Chem 76(21):8599–8610

    Article  Google Scholar 

  • Lü C, Lim CW, Chen W (2009) Size-dependent elastic behavior of FGM ultra-thin films based on generalized refined theory. Int J Solids Struct 46(5):1176–1185

    Article  MATH  Google Scholar 

  • Miller RE, Shenoy VB (2000) Size-dependent elastic properties of nanosized structural elements. Nanotechnology 11(3):139

    Article  Google Scholar 

  • Murmu T, Adhikari S (2010) Scale-dependent vibration analysis of prestressed carbon nanotubes undergoing rotation. J Appl Phys 108(12):123507. doi:10.1063/1.3520404

    Article  Google Scholar 

  • Narendar S (2011) Mathematical modelling of rotating single-walled carbon nanotubes used in nanoscale rotational actuators. Def Sci J 61(4):317–324

    Article  Google Scholar 

  • Narendar S (2012) Differential quadrature based nonlocal flapwise bending vibration analysis of rotating nanotube with consideration of transverse shear deformation and rotary inertia. Appl Math Comput 219(3):1232–1243

    MathSciNet  MATH  Google Scholar 

  • Narendar S, Gopalakrishnan S (2011) Nonlocal wave propagation in rotating nanotube. Res Phys 1(1):17–25

    Google Scholar 

  • Natarajan S et al (2012) Size-dependent free flexural vibration behavior of functionally graded nanoplates. Comput Mater Sci 65:74–80

    Article  Google Scholar 

  • Pradhan SC, Murmu T (2010) Application of nonlocal elasticity and DQM in the flapwise bending vibration of a rotating nanocantilever. Phys E 42(7):1944–1949

    Article  Google Scholar 

  • Rahaeifard M, Kahrobaiyan M, Ahmadian M (2009) Sensitivity analysis of atomic force microscope cantilever made of functionally graded materials. in ASME 2009 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers

  • Reddy J (2010) Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48(11):1507–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Ru C (2010) Simple geometrical explanation of Gurtin-Murdoch model of surface elasticity with clarification of its related versions. Sci China Phys Mech Astron 53(3):536–544

    Article  Google Scholar 

  • Safarabadi M et al (2015) Effect of surface energy on the vibration analysis of rotating nanobeam. J Solid Mech 7(3):299–311

    Google Scholar 

  • Salamat-talab M, Nateghi A, Torabi J (2012) Static and dynamic analysis of third-order shear deformation FG micro beam based on modified couple stress theory. Int J Mech Sci 57(1):63–73

    Article  Google Scholar 

  • Shafiei N, Kazemi M, Fatahi L (2015a) Transverse vibration of rotary tapered microbeam based on modified couple stress theory and generalized differential quadrature element method. Mechanics of Advanced Materials and Structures. doi:10.1080/15376494.2015.1128025

  • Shafiei N, Kazemi M, Ghadiri M (2015b) On size-dependent vibration of Rotary Axially Functionally Graded Microbeam. Int J Eng Sci. doi:10.1016/j.ijengsci.2015.12.008

  • Shu C, Richards BE (1992) Application of generalized differential quadrature to solve two-dimensional incompressible Navier-Stokes equations. Int J Numer Meth Fluids 15(7):791–798

    Article  MATH  Google Scholar 

  • Shu C (2000) Application of Differential Quadrature Method to Structural and Vibration Analysis. Differential Quadrature and Its Application in Engineering. Springer, London, pp 186–223. doi:10.1007/978-1-4471-0407-0_7

  • Şimşek M, Yurtcu H (2013) Analytical solutions for bending and buckling of functionally graded nanobeams based on the nonlocal Timoshenko beam theory. Compos Struct 97:378–386

    Article  Google Scholar 

  • Tauchert TR (1974) Energy principles in structural mechanics. McGraw-Hill Companies, New York

  • Thai H-T (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

  • Tierney HL et al (2011) Experimental demonstration of a single-molecule electric motor. Nat Nano 6(10):625–629

    Article  Google Scholar 

  • van Delden RA et al (2005) Unidirectional molecular motor on a gold surface. Nature 437(7063):1337–1340

    Article  Google Scholar 

  • Wang G-F, Feng X-Q (2007) Effects of surface elasticity and residual surface tension on the natural frequency of microbeams. Appl Phys Lett 90(23):231904

    Article  Google Scholar 

  • Wang CM, Zhang YY, He XQ (2007) Vibration of nonlocal Timoshenko beams. Nanotechnology 18(10):105401

    Article  Google Scholar 

  • Witvrouw A, Mehta A (2005) The use of functionally graded poly-SiGe layers for MEMS applications. In: Materials science forum, vol 492. Trans Tech Publications, Switzerland, pp 255–260

  • Xu X, Kim K, Fan D (2015) tunable release of multiplex biochemicals by plasmonically active rotary nanomotors. Angew Chem Int Ed 54(8):2525–2529

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Ghadiri.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghadiri, M., Shafiei, N. & Safarpour, H. Influence of surface effects on vibration behavior of a rotary functionally graded nanobeam based on Eringen’s nonlocal elasticity. Microsyst Technol 23, 1045–1065 (2017). https://doi.org/10.1007/s00542-016-2822-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-016-2822-6

Keywords

Navigation