Skip to main content
Log in

Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

The present study deals with the consideration of the small-scale effects on the pull-in instability of micro-switches subjected to electrostatic and intermolecular forces in the presence of thermal and residual stress effects. Using Eringen’s nonlocal elasticity theory along with the nonlocal Euler–Bernoulli beam model, the equilibrium equation is derived in the presence of thermal and residual stress effects using virtual displacement principle. The static governing equation, which is extremely nonlinear due to the intermolecular and electrostatic attraction forces plus thermal and residual effects, is solved numerically by Galerkin method. The accuracy of the solution is verified by comparing the obtained results with the existing numerical, analytical, and experimental models. Finally, a comprehensive study is carried out to determine the influence of nonlocal parameters on the pull-in instability characteristics of double clamped microbeam in the presence of thermal and residual stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Arash B, Ansari R (2010) Evaluation of nonlocal parameter in the vibrations of single-walled carbon nanotubes with initial strain. Phys E 42:2058–2064

    Article  Google Scholar 

  • Asghari M, Kahrobaiyan MH, Ahmadian MT (2010) A nonlinear Timoshenko beam formulation based on the modified couple stress theory. Int J Eng Sci 48:1749–1761

    Article  MathSciNet  MATH  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2006) Analysis of electrostatic MEMS using meshless local Petrov-Galerkin (MLPG) method. Eng Anal Bound Elem 30(11):949–962

    Article  MATH  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2007) Effects of Casimir force on pull-in instability in micromembranes. Europhys Lett 77:20010

    Article  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008a) Vibrations and pull-in instabilities of microelectromechanical von Karman elliptic plates incorporating the Casimir force. J Sound Vib 315:939–960

    Article  MATH  Google Scholar 

  • Batra RC, Porfiri M, Spinello D (2008b) Reduced-order models for microelectromechanical rectangular and circular plates incorporating the Casimir Force. Int J Solids Struct 45:3558–3583

    Article  MATH  Google Scholar 

  • Buks E, Roukes M (2001) Stiction, adhesion energy and the Casimir effect in micromechanical systems. Phys Rev B 63:033402

    Article  Google Scholar 

  • Chowdhury S, Ahmadi M, Miller WC (2006) Pull-in voltage study of electrostatically actuated fixed-fixed beams using a VLSI on-chip inter-connect capacitance model. J Microelectromech Syst 15(3):639–651

    Article  Google Scholar 

  • Dequesnes M, Rotkin SV, Aluru NR (2001) Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches. Nanotechnology 13:120–131

    Article  Google Scholar 

  • Eltaher MA, Alshorbagy AE, Mahmoud FF (2013) Vibration analysis of Euler-Bernoulli nanobeams by using finite element method. Appl Math Model 37:4787–4797

    Article  MathSciNet  Google Scholar 

  • Eringen AC (1983) On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves. J Appl Phys 54(9):4703–4710

    Article  Google Scholar 

  • Eringen AC (2002) Nonlocal continuum field theories. Springer

  • Eringen AC, Edelen D (1972) On nonlocal elasticity. Int J Eng Sci 10(3):233–248

    Article  MathSciNet  MATH  Google Scholar 

  • Fakhrabadi MMS, Rastgoo A, Ahmadian MT (2014) Size-dependent instability of carbon nanotubes under electrostatic actuation using nonlocal elasticity. Int J Mech Sci 80:144–152

    Article  Google Scholar 

  • Farrokhabadi A, Abadyan MR, Kooch A (2014a) Modeling the instability of CNT tweezers using a continuum model. Microsyst Technol 20:291–302

    Article  Google Scholar 

  • Farrokhabadi A, Abadian N, Rach R, Abadyan M (2014b) Theoretical modeling of the Casimir force-induced instability in free standing nanowires with circular cross-section. Phys E 63:67–80

    Article  Google Scholar 

  • Fleck NA, Muller GM, Ashby MF, Hutchinson JW (1994) Strain gradient plasticity: theory and experiment. Acta Metall Mater 42:475–487

    Article  Google Scholar 

  • Fu YM, Zhang J (2011) Size-dependent pull-in phenomena in electrically actuated nanobeams incorporating surface energies. Appl Math Model 35(2):941–951

    Article  MathSciNet  Google Scholar 

  • Govindjee S, Sackman JL (1999) On the use of continuum mechanics to estimate the properties of nanotubes. Solid State Commun 110:227–230

    Article  Google Scholar 

  • Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for solids. Int J Solids Struct 48:2496–2510

    Article  Google Scholar 

  • He JH (1999) Homotopy perturbation technique. Comput Methods Appl Mech Eng 178:257–262

    Article  MathSciNet  MATH  Google Scholar 

  • Huang JM, Liew KM, Wong CH, Rajendran S, Tan MJ, Liu AQ (2001) Mechanical design and optimization of capacitive micromachinec switch. Sens Actuators A 93(3):273–285

    Article  Google Scholar 

  • Ke CH, Espinosa HD (2006) Nanoelectromechanical systems (NEMS) and modeling. In: Rieth M, Schommers W, Gennes PD (eds) Handbook of theoretical and computational nanotechnology, Chapter 121. American Scientific Publishers, Valencia

    Google Scholar 

  • Kovalenko A (1969) Thermoelasticity (basic theory and applications). Wolters-Noordhoff Publishing, Groningen

    MATH  Google Scholar 

  • Lam DCC, Yang F, Chong ACM, Wang J, Tong P (2003) Experiments and theory in strain gradient elasticity. J Mech Phys Solids 51:1477–1508

    Article  MATH  Google Scholar 

  • Lamoreaux SK (2005) The Casimir force: background, experiments, and applications. Rep Prog Phys 68:201–236

    Article  Google Scholar 

  • Lee J, Kim S (2005) Manufacture of a nanotweezer using a length controlled CNT arm. Sens Actuators A 120:193–198

    Article  Google Scholar 

  • Li X, Bhushan B, Takashima K, Baek CW, Kim YK (2003) Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nano indentation techniques. Ultra Microsc 97:481–494

    Article  Google Scholar 

  • Li C, Lim CW, Yu JL (2011) Dynamics and stability of transverse vibrations of nonlocal nanobeams with a variable axial load. Smart Mater Struct 20:015023

    Article  Google Scholar 

  • Lim CW (2010) On the truth of nanoscale for nanobeams based on nonlocal elastic stress field theory: equilibrium, governing equation and static deflection. Appl Math Mech 31(1):37–54

    Article  MathSciNet  MATH  Google Scholar 

  • Lim C, Li C, Yu JL (2010) Free vibration of pre-tensioned nanobeams based on nonlocal stress theory. J Zhejiang Univ Sci A 11(1):34–42

    Article  MATH  Google Scholar 

  • Lin WH, Zhao YP (2003) Dynamic behaviour of nanoscale electrostatic actuators. Chin Phys Lett 20:2070–2073

    Article  Google Scholar 

  • Lin WH, Zhao YP (2005) Casimir effect on the pull-in parameters of nanometer switches. Microsyst Technol 11:80–85

  • Lin WH, Zhao YP (2005) Nonlinear behavior for nanoscale electrostatic actuators with Casimir force. Chaos Solitons Fractals 23:1777–1785

  • McElhaney KW, Valssak JJ, Nix WD (1998) Determination of indenter tip geometry and indentation contact area for depth-sensing indentation experiments. J Mater Res 13:1300–1306

    Article  Google Scholar 

  • McFarland AW, Colton JS, Micromech J (2005) Role of material microstructure in plate stiffness with relevance to microcantilever sensors. J Micromech Microeng 15:1060–1068

    Article  Google Scholar 

  • Moghimi Zand M, Ahmadian MT (2010) Dynamic pull-in instability of electrostatically actuated beams incorporating Casimir and van der Waals forces. Proc Inst Mech Eng Part C J Mech Eng Sci 224:2037–2047

    Article  Google Scholar 

  • Mousavi T, Bornassi S, Haddadpour H (2013) The effect of small scale on the pull-in instability of nano-switches using DQM. Int J Solids Struct 50:1193–1202

    Article  Google Scholar 

  • Najar F, Nayfeh AH, Abdel-Rahman EM, Choura S, El-Borgi S (2010) Global stability of microbeam-based electrostatic microactuators. J Vib Control 16:721–748

    Article  MATH  Google Scholar 

  • Nathanson HC, Newell WE, Wickstrom RA, Davis JR (1967) The resonant gate transistor. IEEE Trans Electron 14:117–133

    Article  Google Scholar 

  • Nix WD, Gao H (1998) Indentation size effects in crystalline materials: a law for strain gradient plasticity. J Mech Phys Solids 46:411–425

    Article  MATH  Google Scholar 

  • O’Mahony C, Hill M, Duane R, Mathewson A (2003) Analysis of electromechanical boundary effects on the pull-in of micromachined fixed-fixed beams. J Micromech Microeng 13(4):575–580

    Google Scholar 

  • Osterberg PM, Senturia SD (1997) M-TEST: a test chip for MEMS material property measurement using electrostatically actuated test structures. J Microelectromech Syst 6(2):107–118

    Article  Google Scholar 

  • Pei J, Tian F, Thundat T (2004) Glucose biosensor based on the microcantilever. Anal Chem 76:292–297

    Article  Google Scholar 

  • Pelesko JA, Bernstein DH (2002) Modelling MEMS and NEMS. Chapman and Hall, London

    Book  MATH  Google Scholar 

  • Ramezani A (2011) Stability analysis of electrostatic nanotweezers. Phys E 43:1783–1791

    Article  Google Scholar 

  • Ramezani A, Alasty A, Akbari J (2008) Analytical investigation and numerical verification of Casimir effect on electrostatic nano-cantilevers. Microsyst Technol 14:145–152

    Article  Google Scholar 

  • Reddy JN (2010) Nonlocal nonlinear formulations of beams for bending of classical and shear deformation theories of beams and plates. Int J Eng Sci 48:1507–1518

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy JN (2011) Microstructure-dependent couple stress theories of functionally graded beams. J Mech Phys Solids 59:2382–2399

    Article  MathSciNet  MATH  Google Scholar 

  • Reddy JN, El-Borgi S (2014) Eringen’s nonlocal theories of beams accounting for moderate rotations. Int J Eng Sci 82:159–177

    Article  MathSciNet  Google Scholar 

  • Reddy JN (2007) Nonlocal theories for bending, buckling and vibration of beams. Int J Eng Sci 45(2–8):288–307

    Article  MATH  Google Scholar 

  • Rokni H, Lu W (2013) Surface and thermal effects on the pull-in behaviour of doubly-clamped graphene nanoribbons under electrostatic and Casimir loads. J Appl Mech Trans ASME 80(6):061014–061019

    Article  Google Scholar 

  • Roostai H, Haghpanahi M (2014) Transverse vibration of a hanging non uniform nanoscale tube based on nonlocal elasticity theory with surface effects. Acta Mech Solida Sin 27(2):202–209

    Article  Google Scholar 

  • Roque CMC, Ferreira AJM, Reddy JN (2011) Analysis of Timoshenko nanobeams with a nonlocal formulation and meshless method. Int J Eng Sci 49:976–984

    Article  MATH  Google Scholar 

  • Sadeghian H, Rezazadeh G, Osterberg PM (2007) Application of the generalized differential quadrature method to the study of pull-in phenomena of MEMS switches. J Microelectromech Syst 16(6):1334–1340

    Article  Google Scholar 

  • Saeedi Vahdat A, Rezazadeh G (2011) Effects of axial and residual stresses on thermoelastic damping in capacitive micro-beam resonators. J Franklin Inst 348:622–639

    Article  MathSciNet  MATH  Google Scholar 

  • Simsek M (2014) Large amplitude free vibration of nanobeams with various boundary conditions based on nonlocal elasticity theory. Compos B 56:621–628

    Article  Google Scholar 

  • Song F, Huang GL, Park HS, Liu XN (2011) A continuum model for the mechanical behaviour of nanowires including surface and surface-induced initial stresses. Int J Solids Struct 48(14–15):2154–2163

    Article  Google Scholar 

  • Stölkena JS, Evans AG (1998) A microbend test method for measuring the plasticity length scale. Acta Mater 46:5109–5115

    Article  Google Scholar 

  • Thai HT (2012) A nonlocal beam theory for bending, buckling, and vibration of nanobeams. Int J Eng Sci 52:56–64

    Article  MathSciNet  Google Scholar 

  • Wang Q (2005) Wave propagation in carbon nanotubes via nonlocal continuum mechanics. J Appl Phys 98:124301

    Article  Google Scholar 

  • Wang L (2009) Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. Phys E 41:1835–1840

    Article  Google Scholar 

  • Wang L (2010) Vibration and instability analysis of tubular nano- and micro-beams conveying fluid using nonlocal elastic theory. J Fluids Struct 26:675–684

    Article  Google Scholar 

  • Wang Q, Wang CM (2007) The constitutive relation and small scale parameter of nonlocal continuum mechanics for modelling carbon nanotubes. Nanotechnology 18:075702

    Article  Google Scholar 

  • Wang GW, Zhang Y, Zhao YP, Yang GT (2004) Pull-in stability study of nanotubes under van der Waals forces influence. J Micromech Microeng 14:1119–1125

    Article  Google Scholar 

  • Zhang L, Golod SV, Deckardt E, Prinz V, Grutzmacher D (2004) Free-standing. Phys E 23:280–284

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amin Farrokhabadi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tavakolian, F., Farrokhabadi, A. & Mirzaei, M. Pull-in instability of double clamped microbeams under dispersion forces in the presence of thermal and residual stress effects using nonlocal elasticity theory. Microsyst Technol 23, 839–848 (2017). https://doi.org/10.1007/s00542-015-2785-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-015-2785-z

Keywords

Navigation